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Abstract— How does one evaluate the performance of a
stochastic system in the absence of a perfect model (i.e.
probability distribution)? We address this question under the
framework of optimal uncertainty quantification (OUQ), which
is an information-based approach for worst-case analysis of
stochastic systems. We are able to generalize previous results
and show that the OUQ problem can be solved using convex op-
timization when the function under evaluation can be expressed
in a polytopic canonical form (PCF). We also propose iterative
methods for scaling the convex formulation to larger systems.
As an application, we study the problem of storage placement in
power grids with renewable generation. Numerical simulation
results for simple artificial examples as well as an example using
the IEEE 14-bus test case with real wind generation data are
presented to demonstrate the usage of OUQ analysis.

I. INTRODUCTION

Suppose we are given an optimal control problem of
minimizing the operating cost of a system that depends
on some random parameter θ ∈ R

n. One prerequisite for
this is evaluating the operating cost under a certain control
strategy. Conventional stochastic optimal control normally
assumes that the probability distribution of θ is given as
d, in which case this evaluation amounts to computing the
expectation of the cost function f : R

n → R, i.e., Eθ∼d[f(θ)]
over d. For large-scale systems (i.e., θ is high-dimensional),
however, computing this expectation becomes impractical
for two reasons. Firstly, there may not be sufficient data
for modeling d, unless d belongs to some special class
of distributions that can be described by a few parameters
(e.g., uniform, Gaussian). For example, for a generic discrete
distribution d, the amount of data required for building
a tabular representation of d grows exponentially with n
and will quickly become intractable. Secondly, even if d
could be obtained and represented, exact computation of
the expectation would require high-dimensional numerical
integration and still remain expensive.

In light of these difficulties, current available solutions
have been largely based on two prevalent approaches. These
approaches either ignore the stochasticity of θ and fall back
to deterministic analysis, or approximate d using tractable
models and compute the expectation using sampling-based
methods. Although both have been able to show some useful
insight on system design, they are based on strong prior
knowledge about the distribution and may not stay consistent
with data.
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The proposed approach in this paper seeks a scalable
and information-based method that evaluates the expected
cost under imperfect knowledge about distribution, either due
to insufficient data or computational constraints. Unlike the
two previous approaches, this approach considers a set of
distributions rather than commits to a specific distribution.
This is similar to uncertainty set used in robust control, with
the difference that the set lies in the infinite-dimensional
space of distributions. On the other hand, it uses information
from available data to build a restricted set of distributions to
avoid over-conservatism. For instance, suppose we are able
to estimate from data the mean of d as μ̂ ∈ R

n, then we can
impose a constraint on the mean, i.e.,

Eθ∼d[θ] = μ̂ (1)

to obtain a smaller set of distributions that still contains the
true distribution. In fact, we can use any test function g
defined on R

n to impose constraints in the form1

Eθ∼d[g(θ)] = ĝ (2)

for some constant ĝ. The purpose of g is to include infor-
mation about the distribution d known from data. Its form
normally depends on the type of computation available on
the data and/or the mechanism of data collection. A common
choice is to specify the moments of d. The constraint (1), for
example, corresponds to the case g(θ) = θ, which specifies
the first moment. This kind of constraints does not rely on
explicit modeling of d and is often not difficult to generate
from historical data consisting of instantiations of θ in the
past.

What distribution should one choose within this class
of distributions defined by the constraint (2)? One viable
choice is the worst-case distribution, which maximizes the
operating cost under evaluation. Formally, this can be cast
as an optimization problem over d,

max.
d

Eθ∼d [f(θ)] s.t. Eθ∼d[g(θ)] = ĝ. (3)

This choice has the merit of healthy conservatism: prepare
for the worst case, but only among the cases consistent with
the data. The problem is called optimal uncertainty quan-
tification (OUQ). Unfortunately, it is an infinite-dimensional
optimization problem and cannot be solved directly by any
optimization packages up-to-date. Due to recent advances,
this problem is now known to adopt a finite reduction, i.e.,
there exists a finite-dimensional problem that gives the same
optimal value [1]. To some extent, considering the worst-case

1More generally, the constraints can be inequalities (cf. [1]).
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distribution can be computationally more amenable because
it only requires solving an optimization problem (convex in
some cases, as will be shown later) as opposed to (high-
dimensional) numerical integration.

Throughout the paper, we focus on the worst-case analysis
problem (3) and defer the control problem that solves for the
optimal decision under the worst-case distribution to later
work. The first contribution of this paper is to scale OUQ to
large systems of which the cost function under evaluation
satisfies a particular form. For a generic OUQ problem,
the reduced finite-dimensional problem is non-convex and
may still be highly computationally demanding to obtain
the global optimum. However, it has been shown that there
is a special class of OUQ problems solvable using convex
optimization [2], [3]. This paper extends this result and
studies a more general form called the polytopic canonical
form. The exact method for solving problem in this form,
however, has complexity that grows exponentially with the
dimension of the uncertain parameter. In light of this, we
propose an approximate iterative method that can be applied
to large systems.

The second contribution of this paper is to study the
problem of storage placement in power grids with renew-
able generation under the OUQ framework. Placing storage
devices in the grids is considered a promising solution to mit-
igating the effect of random fluctuations in the renewables [4]
and related problems were recently studied in the control
community [5], [6]. In this context, it is important to evaluate
the ramifications of a given storage placement plan [7]. This
paper shows that the evaluation problem can be transformed
into an OUQ problem with cost function in the polytopic
canonical form. We also present numerical results using a
standard power system test case and renewable generation
data.

II. CONVEX OPTIMAL UNCERTAINTY QUANTIFICATION

In this section, we start from an important class of OUQ
problems, for which the solution can be obtain using convex
optimization. Then we generalize its cost function to what we
call the polytopic canonical form. Exact method for solving
problems in this form can be prohibitively expensive for
a large number of random variables. In order to partially
alleviate this difficulty, we propose an iterative approximate
method that only requires solving smaller problems at each
iteration. The method is guaranteed to converge, and it often
converges close to the true optimum for problems we have
tested.

A. The polytopic canonical form (PCF)

In general, an OUQ problem is non-convex and therefore
difficult to obtain its global optimum. However, there is a
special case for which the solution can be obtained using
convex optimization, provided that two conditions hold:
(1) The function f is piecewise linear and convex; (2)
the constraints only consist of first and second moments.
Under these conditions, it has been shown that the OUQ

problem can be solved by convex optimization, according to
Theorem 1 due to [2].

Theorem 1 (Delage and Ye). Let K be a finite index set. If
the function f : R

n → R can be written as

f(θ) = max
k∈K

{aT
k θ + bk} (4)

for some {ak}k∈K ⊂ R
n and {bk}k∈K ⊂ R, then the

optimization problem over d,

max.
d

Eθ∼d [f(θ)] (5)

s.t. Eθ∼d[θ] = μ̂, covθ∼d[θ] = Σ̂,

achieves the same optimal value as the semidefinite program
(SDP) over Q ∈ S

n
+, q ∈ R

n, and r ∈ R,

min.
Q,q,r

tr((Σ̂ + μ̂μ̂T )Q) + μ̂T q + r (6)

s.t.

[
Q (q − ak)/2

(q − ak)T /2 r − bk

]
� 0, k ∈ K. (7)

Given the set K, and C = {(ak, bk)}k∈K, we denote
the optimization problem (5) and (6) as COUQD(K, C)
and COUQ(K, C), respectively. We also denote their (same)
optimal value as COUQ∗(K, C). The dependence on μ̂ and
Σ̂ is omitted. This notation also applies to any subset A ⊂ K,
i.e., COUQ(A, C) denotes the optimization problem

min.
Q,q,r

tr((Σ̂ + μ̂μ̂T )Q) + μ̂T q + r

s.t.

[
Q (q − ak)/2

(q − ak)T /2 r − bk

]
� 0, k ∈ A.

In this paper, we will consider a more general form of f ,
which we call the polytopic canonical form (PCF).

Definition 2 (Polytopic canonical form). A function f :
R

n → R is said to be in the polytopic canonical form (PCF)
if it can be written as

f(θ) = max
(a,b)∈P

{aT θ + b}, a ∈ R
n, b ∈ R (8)

for some polytope P of dimension (n + 1).

Alternatively, f can be regarded as the optimal value of a
family of linear programs (LP) parameterized by θ:

max.
a,b

aT θ + b s.t. (a, b) ∈ P . (9)

The PCF (8) subsumes (4). For any f in the form (4) with
C = {(ak, bk)}k∈K, we can choose P to be the convex hull
of C. This implies C ⊂ P , and hence

f(θ) = max
(ak,bk)∈C

{aT
k θ + bk} ≤ max

(a,b)∈P
{aT θ + b}. (10)

The last inequality is always tight, which can be shown by
using a basic property of LP. Denote the vertices (extreme
points) of P as V . We have V ⊆ C, hence

max
(ak,bk)∈V

{aT
k θ + bk} ≤ max

(ak,bk)∈C
{aT

k θ + bk}. (11)
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From the optimality of the extreme points, we know that
any optimum for the LP (9) can always be attained at some
(ak, bk) ∈ V , no matter what θ is chosen, i.e.,

max
(a,b)∈P

{aT θ + b} = max
(ak,bk)∈V

{aT
k θ + bk}. (12)

Therefore, from (10)–(12), the equality

max
(a,b)∈P

{aT θ + b} = max
(ak,bk)∈C

{aT
k θ + bk}

must hold and f(θ) = max(a,b)∈P{a
T θ + b}, i.e., any f in

the form (4) can be rewritten in PCF. On the other hand,
given any function f in PCF, we can also rewrite it in the
form (4) by setting C as the vertices of P . The benefit of
using PCF is its flexibility. In PCF, P can be defined either
by its vertices, in which case it reduces to the form (4), or by
the intersection of half-spaces. The latter representation can
sometimes be more compact, e.g. for the storage placement
problem in Section III.

B. Exact iterative method method for PCF

For any f in PCF, there is at least one practical issue in
directly applying Theorem 1 by rewriting f in the form (4).
Obtaining the vertices V , usually through vertex enumeration
algorithms, can be computationally demanding when the
dimension of P is high or the number of its composing
constraints is large. In general, the cardinality of V , denoted
as |V|, grows exponentially with the dimension n. This
becomes prohibitively expensive even for a moderate n and a
moderate number of constraints. Even if V could be obtained,
solving the SDP (6) would also be expensive when |V|
(hence |K|) is large.

To this end, we seek iterative methods that solve
a smaller problem at each iteration. In general, if we
choose an arbitrary subset A ⊂ K and solve the prob-
lem COUQ(A,V), we are only guaranteed to obtain a
lower bound COUQ∗(A,V) ≤ COUQ∗(K,V) since the
constraints for k ∈ K\A have been ignored. The inequality
is tight if and only if the optimal solution (Q∗, q∗, r∗) for
COUQ(A,V) also satisfies the constraints for k ∈ K\A,
i.e.,[

Q∗ (q∗ − ak)/2
(q∗ − ak)T /2 r∗ − bk

]
� 0, ∀k ∈ K\A. (13)

Based on this fact, one can use the following procedure to
obtain COUQ∗(K,V), without including all the constraints
in K in the optimization problem at first:

1) Start with an initial index set A ⊂ K.
2) Obtain (Q∗, q∗, r∗) for the problem COUQ(A,V).
3) If (Q∗, q∗, r∗) satisfies (13), report (Q∗, q∗, r∗) as the

solution to COUQ(K,V) and terminate. Otherwise,
there must exist a set B ⊂ K\A such that the
condition (13) is violated for k ∈ B. Set A := A ∪ B
and repeat steps 2–3.

C. Approximate iterative method for PCF

There are two issues with this procedure. One issue is
that checking the condition (13) can be difficult, because the
number of constraints to be checked is |K| − |A|, which
is usually large (on the same order as |K| assuming |A| is
small). The other issue is that, in the worst case, the index
set A may continue to grow until A = K, in which the final
problem to solve has the same complexity as the original
problem.

Fortunately, when f can be expressed in PCF, we have a
theorem that finds a violating constraint in step 3 without
exhaustively checking all the constraints in K\A. Moreover,
Corollary 7 will show that, once such a constraint is found,
it can replace an existing constraint in A without affecting
convergence of the method. This prevents A from growing
and avoids the possibility of solving a problem as large
as A = K. This method of finding a violating constraint
uses an important property of the solution to the prob-
lem COUQ(A,V). Theorem 3 (cf. [2]) shows that, when we
obtain the optimal solution (Q∗, q∗, r∗) to COUQ(A,V), we
automatically obtain the corresponding optimal probability
distribution d∗ for the problem COUQD(A,V) from the
Lagrange multipliers. This optimal distribution d∗ can always
be realized by a discrete distribution consisting of at most
|A| Dirac masses located at {θk}k∈A ⊂ R

n with probability
weights {pk}k∈A ⊂ R+.

Theorem 3. Suppose the Lagrange multiplier for the con-
straint (7) in the problem COUQ(K,V) is[

Γk γk

γT
k pk

]

for each k ∈ K. Then for every pk 
= 0, the optimal
distribution d∗ for the problem COUQD(K,V) contains a
Dirac mass located at θk = γk/pk with probability pk.

Remark 4. Theorem 3 implies that the maximum number
of Dirac masses in d∗ is |K|. On the other hand, the finite
reduction theorem (cf. [1]) shows that the number of Dirac
masses required for realizing d∗ is at most N + 1, where
N is the number of independent scalar equalities in the
constraint (2). In the case of problem (5), for example,
the number N = n + n(n + 1)/2 (the factor 1/2 is
due to the symmetry of Σ̂). Combining the two results,
we know the maximum number of required Dirac masses
is min(|K|, N + 1). In practice, depending on the problem,
the actual number of nonzero Dirac masses can be even
smaller than min(|K|, N + 1).

The optimal (discrete) probability distribution provides
another way to compute COUQ∗(A,V), i.e.,

COUQ∗(A,V) =
∑
k∈A

pk(aT
k θk + bk).

By using this alternative expression, Theorem 5 shows that
{θk}k∈A corresponding to a suboptimal solution (Q∗, q∗, r∗)
can be used for finding a violating constraint in K\A.
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Theorem 5. For a given set A, suppose (Q∗, q∗, r∗) is
the optimal solution for COUQ(A,V) and the set of Dirac
masses of the optimal distribution is {θk}k∈A. If for any u ∈
A, there exists some v ∈ K such that

aT
v θu + bv > aT

u θu + bu, (14)

then the constraint[
Q∗ (q∗ − av)/2

(q∗ − av)
T /2 r∗ − bv

]
� 0 (15)

is violated.

Proof: We prove the theorem by contradiction. Con-
sider the optimization problem COUQ(A∪{v},V). Suppose
the condition (15) is not violated, then (Q∗, q∗, r∗) would
also be the optimal solution for COUQ(A∪ {v},V), which
implies that COUQ∗(A ∪ {v},V) is∑

k∈A

pk(aT
k θk + bk), (16)

when f(θ) = maxk∈A∪{v}{a
T
k θ + bk}. On the other hand,

COUQ∗(A ∪ {v},V) should be at least

pu(aT
v θu + bv) +

∑
k∈A\{u}

pk(aT
k θk + bk), (17)

which is attained under the same discrete distribution con-
sisting of {(θk, pk)}k∈A. The quantity (17) will always be
greater than (16), hence a contradiction.

Remark 6. Condition (14) is only sufficient. Hence, it is not
guaranteed to find all the violating constraints.

If f is in PCF, finding such (av, bv) for θu only requires
solving the LP

max.
a,b

aT θu + b s.t. (a, b) ∈ P .

If the optimal solution (a∗, b∗) for this LP satisfies

(a∗)T θu + b∗ > aT
u θu + bu,

then we have successfully found (av, bv) = (a∗, b∗). Oth-
erwise, no such (av, bv) exists. Another useful by-product
of this new way of finding a violating constraint is that the
constraint corresponding to u can be removed from A in
the next iteration while still ensuring that COUQ∗(A,V) is
increasing.

Corollary 7. For A, V , u and v defined in Theorem 5,
let A′(u, v) = (A\{u}) ∪ {v}. Then

COUQ∗(A′(u, v),V) > COUQ∗(A,V).

Proof: For {θk}k∈A in the proof of Theorem 5,

COUQ∗(A′(u, v),V) ≥ pu(aT
v θu + bv)

+
∑

k∈A\{u}

pk(aT
k θk + bk).

The proof of Theorem 5 has shown that the right hand side
is strictly greater than∑

k∈A

pk(aT
k θk + bk) = COUQ∗(A,V),

which completes the proof.
Due to Corollary 7, we can use a modified iterative method
than the one proposed at the beginning of this section. In
particular, Step 3 can be changed to:

3’) Obtain {θk}k∈A and check if for any u ∈ A, there
exists v ∈ K such that (av, bv) satisfies (14). If not,
then report (Q∗, q∗, r∗) as the optimal solution to
the problem COUQ(K,V) and terminate. Otherwise,
for every (u, v) satisfying (14), set A := A′(u, v)
iteratively until no such (u, v) remains. Repeat steps 2
and 3’.

This approximate method is guaranteed to converge. At each
iteration, the new index set A will give a non-decreasing
optimal value for the corresponding optimization problem.
Therefore, this sequence of optimal values is monotone and,
at the same time, must be bounded by COUQ∗(K,V). By the
monotone convergence theorem, this sequence, consisting of
real numbers, must have a limit, i.e., the method converges.
This method is not, in general, guaranteed to converge to the
true optimum since there may still be violating constraints
when the algorithm exits (see Remark 6). However, the result
will always be a lower bound of the true optimal value,
since some constraints in K have been removed from the
minimization problem COUQ(K,V). Therefore, we can run
the same optimization problem multiple times with different
initial assignments of A and choose the highest among all
the results to get an improved approximation.

We now use a simple example to test this approximate
method on small problems. In these examples, we arbitrarily
generate μ̂ ∈ R

n, Σ̂ ∈ S
n
+, and choose P as the (n + 1)-

dimensional hypercube

{(a, b) : 0 � a � 1, 0 ≤ b ≤ 1},

where 1 and 0 denote vectors in R
n containing all ones

and all zeros, respectively. For each n, we compare the
relative error between the exact solution from (6) and the
approximate solution. Fig. 1 shows the results for n from
1 to 16. The choice of n is limited by the computational
time of the exact method (for n = 16, it takes about 18.6
hours on an Intel Xeon 3.00 GHz workstation). To obtain
statistics about the approximate method, we perform 100
trials for each n, and compute the 10% and 90% quantile
of the errors. It can been seen that most of the errors are
within 5%. Establishing a bound on the rate of growth of
the error as n increases is subject to our current work.

III. STORAGE PLACEMENT PROBLEM

In this section, we introduce the storage placement prob-
lem in power grids as one application of OUQ. We show
that this evaluation problem can be converted into PCF using
Lagrange duality from optimization theory and solved within
the framework of convex OUQ.

A. A simple power grid model with energy storage

We model a power grid as a discrete-time dynamical
system on a finite graph (N , E) with time indices T =
{1, 2, · · · , T }. The vertices N are also called buses. For
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Fig. 1. Relative errors of the approximate method. Blue crosses: relative
errors. Red bars: 10% and 90% quantiles of the relative errors.

simplicity, we use the shorthand notation x to denote the
vectorization of {xi(t)}i∈N ,t∈T . At any time t, we refer
to gi(t), di(t), and ri(t) as power generation from the
renewables, user consumption, and charge rate of storage
devices at bus i. As a convention, if the storage devices are
being charged, then ri(t) > 0. Under this convention, the
total local net power consumption, without considering other
sources of generation than the renewables, becomes

di(t) − gi(t) + ri(t).

Due to physical constraints, the storage level at bus i must
stay between 0 and the maximum capacity Ei, i.e.,

0 ≤
t∑

τ=0

ri(τ) ≤ Ei, ∀i ∈ N , t ∈ T ∪ {0}.

In an abuse of notation, we use ri(0) to denote the initial
level of storage at bus i. Aside from local generation and
consumptions, power can also flow between adjacent buses.
For any neighboring buses i and j (i.e., (i, j) ∈ E), the power
flow from i to j is given by

Bij(αi(t) − αj(t)),

where Bij is the susceptance of the transmission line be-
tween i and j, and αi(t) is the voltage angle of bus i. Here
we use a DC power flow model for simplicity (cf. [8] for its
applicability). A transmission line can only support a limited
amount power flow Qij ≥ 0, which imposes the constraint

|Bij [αi(t) − αj(t)]| ≤ Qij , ∀(i, j) ∈ E , t ∈ T .

In summary, if the renewables are the only sources of
generation, the total net power consumption at bus i is

Pi(t) = δi(t) + ri(t) +
∑

(i,j)∈E

Bij [αi(t) − αj(t)],

where δi(t) � di(t) − gi(t). Physically, if Pi(t) ≤ 0,
the consumption is covered by local renewable generation
and power flows from adjacent buses. The extra power is
usually dumped via, e.g., heating thermal masses. However,
if Pi(t) > 0, which implies a shortfall in generation, due
to power flow constraints, the unmet portion must then

be matched by additional power sources, usually from the
so-called spinning reserves in the form of conventional
generation.

For simplicity, we assume that the operating cost only
depends on the amount of power drawn from spinning
reserves. All the other factors, including dumping the extra
local power, renewable usage, storage charging/discharging,
and power transmission are assumed to incur no cost. This
simplification can potentially be crude. For example, storage
devices such as chemical batteries often have a finite number
of charging cycles, so charging/discharging cannot be treated
as entirely free. These potential refinements will be left for
future work. Under this assumption, at time t, the cost for
bus i can be modeled as a hinge cost

Ji(t) = [Pi(t)]
+ � max{Pi(t), 0},

and the operating cost for the entire grid over time is

J =
∑
i∈N

T∑
t=1

Ji(t).

Suppose δi(t) is known, for a given placement of stor-
age {Ei}i∈N , one can choose how to operate the storage
devices and transmit power over the network to minimize
the operating cost by solving the problem

min.
r,α

J(δ, r, α) (18)

s.t. |Bij [αi(t) − αj(t)]| ≤ Qij , ∀(i, j) ∈ E , t ∈ T ,

0 ≤
t∑

τ=0

ri(τ) ≤ Ei, i ∈ N , t ∈ T ∪ {0},

T∑
τ=1

ri(τ) ≥ 0, i ∈ N .

The last constraint is added in order to prevent one from
minimizing the operating cost by setting a large initial
level of charge (which in practice will incur cost). This
optimization problem is always feasible, since r = 0 and
α = 0 will satisfy all the constraints.

B. Worst-case analysis

We would like to compute the worst-case operating cost
under a given placement of storage {Ei}. We treat δi(t)
as the uncertainties for capturing the stochasticity in both
renewable generation and user demand. There are two can-
didate formulations due to the extra freedom in optimizing
the power flow by choosing r and α.

• maxδ∼d Eδ[minr,α J(δ, r, α)]: This is the “clairvoyant”
worst-case analysis. It assumes that power flow op-
timization will have full knowledge about the actual
instantiation of δ.

• minr,α[maxδ∼d Eδ[J(δ, r, α)]]: This is the “conserva-
tive” worst-case analysis. It assumes a fixed plan for
power flow, independent of the actual instantiation of
δ.

In this paper, we choose the first formulation because the
time horizon under consideration will be 24 hours, and one
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normally has good knowledge about δ within this horizon
(into the future) from forecast, which has been a common
practice for many system operators. The second formulation
seems too conservative by abandoning any real-time control
on the power flow. Formally, the optimal UQ problem
becomes

max.
d

Eδ∼d [G(δ)]

s.t. Eδ∼d[δ] = μ̂, covδ∼d[δ] � Σ̂,

where G(δ) is the optimal value of the optimization prob-
lem (18) for a given δ.

C. Conversion into PCF

Unfortunately, the function G is not in PCF. However, it is
possible to convert G into PCF using Lagrange duality. By
introducing slack variables, the optimization problem (18)
can be rewritten as an LP, i.e.,

min.
r,α,Ji(t)

∑
i∈N

T∑
t=1

Ji(t)

s.t. Bij [αi(t) − αj(t)] ≤ Qij , (i, j) ∈ E , t ∈ T ,

Bij [αi(t) − αj(t)] ≥ −Qij , (i, j) ∈ E , t ∈ T ,

0 ≤
t∑

τ=0

ri(τ) ≤ Ei, i ∈ N , t ∈ T ∪ {0},

T∑
τ=1

ri(τ) ≥ 0, i ∈ N ,

Ji(t) ≥ 0,

Ji(t) ≥ δi(t) + ri(t) +
∑

(i,j)∈E

Bij [αi(t) − αj(t)],

whose Lagrange dual problem

max.
λ,ν

∑
i∈N

T∑
t=1

λ
(1)
i (t)δi(t) −

∑
i∈N

T∑
t=0

λ
(2)
i (t)Ei

−
1

2

∑
(i,j)∈E

T∑
t=1

Qij(λ
(3)
ij (t) + λ

(3)
ji (t)) (19)

s.t. 0 ≤ λ
(1)
i (t) ≤ 1, i ∈ N , t ∈ T , (20)

λ
(2)
i (t) ≥ 0, i ∈ N , t ∈ T ∪ {0}, (21)

λ
(3)
ij (t) ≥ 0, (i, j) ∈ E , t ∈ T , (22)

λ
(2)
i (t) ≥ λ

(1)
i (t + 1) − λ

(1)
i (t),

i ∈ N , t ∈ T \{T }, (23)

λ
(2)
i (T ) ≥ −λ

(1)
i (T ) − ν, i ∈ N , (24)

λ
(2)
i (0) ≥ λ

(1)
i (1) + ν, i ∈ N , (25)∑

(i,j)∈E

[
Bij(λ

(1)
i (t) − λ

(1)
j (t) − λ

(3)
ij (t)

+ λ
(3)
ji (t))

]
= 0, i ∈ N , t ∈ T . (26)

is also an LP. It can be seen that the dual LP (19) has the
form (9) for a = λ(1),

b = −
∑
i∈N

T∑
t=0

λ
(2)
i (t)Ei

−
1

2

∑
(i,j)∈E

T∑
t=1

Qij(λ
(3)
ij (t) + λ

(3)
ji (t)),

and the polytope P defined by constraints (20)-(26). Since
the primal problem is an LP and always feasible, strong
duality holds, which implies that the dual LP gives the same
optimal value as the primal LP. In other words, G can be
redefined by the dual LP and hence can be rewritten in PCF.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present numerical simulation results for
the storage placement problem under three scenarios. For the
first two scenarios, we use simple network configurations,
in particular, 1-bus and 2-bus networks. The purpose of
these examples is to show some insight into the differences
between deterministic analysis and the OUQ analysis. For
the third scenario, we use the IEEE 14-bus test case as a
more practical configuration and data from real renewable
generation. Through this example, we aim to demonstrate
that the approximate method is capable of analyzing a
practical system.

A. 1-bus network

First we consider a network consisting of one isolated
bus, i.e., |N | = 1. This setting has the benefit of isolating
any influence by power transmission. We will fix μ̂ and
focus on the effect of Σ̂. The number of time slices is
chosen as 5 so that the exact method can be used. Fig. 2a
compares the results from (1) deterministic analysis, which
assumes that δ follows μ̂ deterministically, (2) OUQ analysis
with Σ̂ = (0.1)2I (I is the identity matrix), and (3) OUQ
analysis with Σ̂ = (0.4)2I . All the curves follow the law
of diminishing returns, i.e., adding storage will become less
helpful in reducing the operating cost if some storage has
already been in place. The differences are in the slope of
the curves. For the deterministic analysis, there is a hard
threshold after which adding storage will have zero reduction
on the cost, whereas the same hard threshold does not appear
for the OUQ analysis. This trend is not difficult to understand
for the deterministic case: the operating cost cannot be made
lower than the cumulative net demand over the entire time
horizon, since adding storage does not contribute to power
generation. For the results from the OUQ analysis, lower
variance will cause a steeper slope. This can be understood
by treating the case with lower variance as closer to the
deterministic case, which has the steepest slope among all
the curves.

The cost-storage curve is not only affected by the variance
(diagonal entries of Σ̂), but also by the (time) correlation
(off-diagonal entries of Σ̂). Fig. 2b compares the results
of no correlation and positive correlation, where Σ̂ is gen-
erated from a Laplace covariance function (also known as
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covariance kernel): Σ̂ij = exp(|i − j|/τ) for some constant
τ . It can be seen that the presence of positive correlation
leads to a slower decrease in the cost. This is expected,
since the cost is dominated by the “bad event” during which
the net demand at all time instances becomes higher than
normal simultaneously, and this is more likely to happen
with positive time correlation.
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Fig. 2. Results for 1-bus network. (a) Effect of variance. (b) Effect of
(positive) time correlation.

B. 2-bus network

The purpose of the 2-bus example is to examine the effect
of power flow, which can potentially make the operating cost
less sensitive to the locations of storage. In the extreme
case, if an infinite amount of power is allowed to flow
across a fully connected network, then any storage placement
will give the same operating cost. For a 2-bus network,
there can be only one transmission path, and we study
how the maximum power flow Qmax of this path affects
the operating cost. The two buses are set to be identical,
except for their covariance matrix: Σ̂1 = (0.1)2I and Σ̂2 =
(0.4)2I . Fig. 3a compares the results for three power flow
limits: Qmax = 0 (the two buses are isolated), 0.1, and 0.2.
In the simulation, the total storage Etot is fixed, and the
operating cost is plotted against E1, the storage assigned to
bus 1. As expected, as Qmax becomes larger, the distribution
of storage between the two buses becomes less important.

We also study the effect of total storage Etot on the dis-
tribution between the two buses. Fig. 2b shows the operating
cost as a function of E1/Etot, the relative portion of storage
for bus 1. As Etot increases, assigning more portion to bus
2 becomes more beneficial. This can be understood from the
diminishing return curves in Fig. 2a. Recall that bus 1, whose
local demand has a lower variance, enters the diminishing
return regime more quickly than bus 2. Therefore, when
there has already been enough storage for bus 1, i.e., Etot is
large enough, it starts to become more helpful to assign more
storage to bus 2, which has not yet entered the diminishing
return regime.

C. IEEE 14-bus network with renewable generation

In this more practical example, we choose the IEEE 14-bus
test case as the network model. The IEEE 14-bus system can
be viewed as an abstraction of a portion of the Midwestern
US transmission grid. It consists of 5 generator buses and
9 load-only buses. Daily load and generation profiles are
created using the data set from [6]. For simplicity, we treat
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Fig. 3. Results for 2-bus network. (a) Effect of transmission capac-
ity Qmax. (b) Effect of total storage Etot.

user demand as deterministic and assume that uncertainty
only comes from generation, since uncertainty in generation
often dominates that in user demand. The time horizon is set
to be 24 hours and divided into 8 time slices, which gives
40 random variables in total. This choice of time resolution
is limited by the size of the SDP that our machine (Intel
Core2 Duo 2.33 GHz, 4 GB RAM, 32-bit) is capable of
handling using a general-purpose solver (SeDuMi). We are
currently working to overcome this limitation by exploiting
the structure of the problem. Statistics, including μ̂ and the
diagonal entries of Σ̂, are computed from historical records.
Since we do not have enough data to compute the full
covariance matrix, part of Σ̂ is computed from historical data
from the Alberta Electric System Operator (AESO), another
source of wind generation data. Specifically, we compute
the matrix of correlation coefficients from AESO and scale
it accordingly to obtain Σ̂ for our example. Fig. 4a visualizes
the matrix of correlation coefficients. It can be seen that
nearby time slots are positively correlated, and the correlation
decays as the time difference grows.

Given μ̂, we can solve for the optimal storage placement
strategy in the deterministic case. This particular placement
is then evaluated using the OUQ analysis. Due to the size
of the problem, the approximate method in Section II-B is
used. Similar to the 1-bus and 2-bus examples, correlation
affects the result in the 14-bus example as well. Fig. 4b
shows the results for (1) deterministic analysis, (2) OUQ
without correlation (diagonal entries of Σ̂), and (3) OUQ
with correlation. It can be seen that deterministic analysis
gives the most optimistic prediction. In fact, since the cost
function G is convex (as a result of pointwise maximum of
affine functions), the deterministic analysis given by G(μ̂)
provides a lower bound for Eδ[G(δ)], i.e.,

G(μ̂) = G(Eδ[δ]) ≤ Eδ[G(δ)],

according to Jensen’s inequality. Despite the fact that the
OUQ results are obtained through the approximate iterative
method in Section II-C, they give greater costs than the
deterministic analysis, which indicates that the OUQ analysis
is able to provide a more useful bound that is closer to
the worst case in this example. Between the two OUQ
results, incorporating positive correlation tends to give a
more conservative prediction. This can be explained using
similar reasoning as that used for Fig. 2b. Nonetheless, both
OUQ results are considerably less conservative than worst-
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case interval analysis, which gives a constant cost of 48.13
by assuming zero generation (not shown in Fig. 4b).

 

 

6am 12pm 6pm

6am

12pm

6pm

0.5

0.6

0.7

0.8

0.9

1

(a)

0 5 10 15
5

10

15

20

25

Total storage

E
xp

ec
te

d 
co

st
 

 

deterministic
OUQ (no corr.)
OUQ

(b)

Fig. 4. Results for the IEEE 14-bus case with real wind generation. (a) Time
correlation in wind power generation. (Source: AESO). (b) Cost evaluation
using different models of uncertainty.

V. RELATED WORK

The earliest origin of OUQ, or similar problems under
different names, can be traced back to the work on general-
ization of Chebyshev-type inequalities by Isii [9], Marshall
and Olkin [10] in the 1950s and 1960s. Interested readers
can refer to Owhadi et al [1] for a more recent development
on OUQ and finite reduction of the optimization problem.
Convex formulation of OUQ has been recently studied by
a group of researchers. An incomplete list of these includes
Bertsimas and Popescu [3], Vandenberghe et al. [11], Delage
and Ye [2], and Topcu et al. [12]. This formulation has
recently attracted attention due to the latest advancements
in numerical methods for convex optimization problems, in
particular, SDPs. The closest work to this paper is the one
by Delage and Ye [2], except that they have assumed the
problem is always tractable using the exact method.

For literature on the distribution of storage in smart grids,
many have been based on deterministic analysis [13], [14].
Probabilistic analysis has also been adopted, in particular, the
risk-limiting approach [15], [6]. The risk-limiting approach
examines the probability that the power grids fall into a
certain unsafe operating regime. This criterion has a similar
flavor to the worst-case analysis used in this paper. However,
current work often assumes a perfect probabilistic model
(e.g., multivariate Gaussian) instead of considering a class
of distributions consistent with historical data.

VI. CONCLUSIONS

We have presented the framework of OUQ as a method for
evaluating the worst-case performance of stochastic systems
without accurate knowledge about the underlying probabilis-
tic model (distribution). OUQ has the advantage of simulta-
neously considering a class of probability distributions that
are consistent with observed data. We generalize previous
results and propose the polytopic canonical form for the
cost function under which that the OUQ problem can be
solved using convex optimization. To scale the formulation to
larger systems, we also present iterative methods to alleviate
the issue of exponential growth of the constraints. As an
application, we study the problem of storage placement in

power grids with renewable generation. Numerical simu-
lation results for simple artificial examples as well as an
example using the IEEE 14-bus test case with wind genera-
tion data are presented. In particular, the OUQ approach is
able to incorporate time correlation into the analysis, which
has significant influence of the result but can be difficult to
include using other approaches.
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