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In this contribution, we develop a variational integrator for the simulation of (stochastic
and multiscale) electric circuits. When considering the dynamics of an electric circuit,
one is faced with three special situations: 1. The system involves external (control) forcing
through external (controlled) voltage sources and resistors. 2. The system is constrained via
the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based
on a geometric setting, an appropriate variational formulation is presented to model the
circuit from which the equations of motion are derived. A time-discrete variational formu-
lation provides an iteration scheme for the simulation of the electric circuit. Dependent on
the discretization, the intrinsic degeneracy of the system can be canceled for the discrete
variational scheme. In this way, a variational integrator is constructed that gains several
advantages compared to standard integration tools for circuits; in particular, a comparison
to BDF methods (which are usually the method of choice for the simulation of electric cir-
cuits) shows that even for simple LCR circuits, a better energy behavior and frequency
spectrum preservation can be observed using the developed variational integrator.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Variational integrators have mainly been developed and used for a wide variety of mechanical systems. However, real-life
systems are generally not of purely mechanical character. In fact, more and more systems become multidisciplinary in the
sense that not only mechanical parts but also electric and software subsystems are involved, which are called mechatronic
systems. Since the integration of these systems with a unified simulation tool is desirable, the aim of this work is to extend
the applicability of variational integrators to mechatronic systems. In particular, as the first step towards a unified simula-
tion, we develop a variational integrator for the simulation of electric circuits.

Overview. Variational integrators [1] are based on a discrete variational formulation of the underlying system, for example
based on a discrete version of Hamilton’s principle for conservative mechanical systems. The resulting integrators, which are
given by the discrete Euler–Lagrange equations, are symplectic and momentum-preserving and have an excellent long-time
energy behavior. By choosing different variational formulations (e.g. Hamilton, Lagrange-d’Alembert, Hamilton-Pontryagin,
etc.), variational integrators have been developed for classical conservative mechanical systems (for an overview see [2,3]),
forced [4] and controlled [5] systems, constrained systems (holonomic [6,7] and nonholonomic systems [8]), nonsmooth sys-
tems [9], stochastic systems [10], and multiscale systems [11]. Most of these systems share the assumption that they are
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non-degenerate, that is the Legendre transformation of the corresponding Lagrangian is a diffeomorphism. By applying Ham-
ilton’s principle to a regular Lagrangian system, the resulting Euler–Lagrange equations are ordinary differential equations of
second order and equivalent to Hamilton’s equations.

The Lagrangian formulation for LC circuits is based on the electric and magnetic energies in the circuit and the intercon-
nection constraints which are expressed in the Kirchhoff laws. There exists a large variety of different approaches for a
Lagrangian or Hamiltonian formulation of electric circuits (see e.g. [12–16] and references therein). All of these authors treat
the question of which choice of the Lagrangian coordinates and derivatives is the most appropriate one. Several settings have
been proposed and analyzed, e.g. a variational formulation based on capacitor charges and currents, on inductor fluxes and
voltages, and a combination of both settings, as well as formulations based on linear combinations of the charges and flux
linkages. Typically, one wants to find a set of generalized coordinates such that the resulting Lagrangian is non-degenerate.
However, within such a formulation, the variables are not easily interpretable in terms of original terms of a circuit.

A recently-considered alternative formulation is based on a redundant set of coordinates that results in a Lagrangian sys-
tem for which the Lagrangian is degenerate. For a degenerate Lagrangian system, that is the Legendre transform is not invert-
ible, the Euler–Lagrange equations involve additional hidden algebraic constraints. Then, the equations do not have a unique
solution, and additional constraints are required for unique solvability of the system. For the circuit case, these are provided
by the Kirchhoff Current Law (KCL). From a geometric point of view, the KCL provides a constraint distribution that induces a
Dirac structure for the degenerate system. The associated system is called an implicit Lagrangian system. In [17,18], it was
shown that nonholonomic mechanical systems and LC circuits as degenerate Lagrangian systems can be formulated in
the context of induced Dirac structures and associated implicit Lagrangian systems. The variational structure of an implicit
Lagrange system is given in the context of the Hamiltonian-Pontryagin-d’Alembert principle, as shown in [19]. The resulting
Euler–Lagrange equations are called the implicit Euler–Lagrange equations [17,19,20], which are implicit differential–alge-
braic equations that consist of a system of first order differential equations and an additional algebraic equation that con-
strains the image of the Legendre transformation (called the set of primary constraints). Thus, the modeling of electric
circuits involves both primary constraints as well as constraints coming from Kirchhoff’s laws. In [21], an extension towards
the interconnection of implicit Lagrange systems for electric circuits is demonstrated. For completeness, we have to mention
that the corresponding notion of implicit Hamiltonian systems and implicit Hamiltonian equations was developed earlier by
[22–24]. An intrinsic Hamiltonian formulation of dynamics of LC circuits as well as interconnections of Dirac structures have
been developed, e.g. in [23,25], respectively.

There are only a few works dealing with the variational simulation of degenerate systems, e.g. in [26], variational inte-
grators with application to point vertices as a special case of degenerate Lagrangian system are developed. Although there
exists a variety of different variational formulations for electric circuits, variational integrators for their simulation have not
been concretely investigated and applied thus far. In [27], a framework for the description of the discrete analogues of im-
plicit Lagrangian and Hamiltonian systems is proposed. This framework is the foundation for the development of an integra-
tion scheme. However, no concrete simulation scenarios have yet been performed. Furthermore, the discrete formulation of
the variational principle is slightly different from the approach presented in this work and thus, results in a different scheme.

Contribution. In this work, we present a unified variational framework for the modeling and simulation of electric circuits.
The focus of our analysis is on the case of ideal linear circuit elements that consist of inductors, capacitors, resistors, and
voltage sources. However, this is not a restriction of this approach, and the variational integrators can also be developed
for nonlinear circuits, which is left for future work. A geometric formulation of the different possible state spaces for a circuit
model is introduced. This geometric view point forms the basis for a variational formulation. Rather than dealing with Dirac
structures, we work directly with the corresponding variational principle, where we follow the approach introduced in [19].
When considering the dynamics of an electric circuit, one is faced with three specific situations that lead to a special treat-
ment within the variational formulation: 1. The system involves external (control) forcing through external (controlled) volt-
age sources. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is
degenerate, which leads to primary constraints. For the treatment of forced systems, the Lagrange-d’Alembert principle is
the principle of choice. By involving constraints, constrained variations are considered which results in a constrained prin-
ciple. The degeneracy requires the use of the Pontryagin version; thus, the principle of choice is the constrained Lagrange-
d’Alembert-Pontryagin principle [19]. Two variational formulations are considered: First, a constrained variational formulation
is introduced for which the KCL constraints are explicitly given as algebraic constraints, whereas the KVL are given by the
resulting Euler–Lagrange equations. Second, an equivalent reduced constrained variational principle is developed for which
the KCL constraints are eliminated due to a representation of the Lagrangian on a reduced space. In this setting, the charges
and flux linkages are the differential variables, whereas the currents play the role of algebraic variables. The number of
inductors in the circuit and the circuit topology determine the degree of degeneracy of the system. For the reduced version,
we show for which cases the degeneracy of the system is canceled via the KCL constraints. Based on the variational formu-
lation, a variational integrator for electric circuits can be constructed. For the case of a degenerate system, the applicability of
the variational integrator is dependent on the choice of discretization. Based on the type and order of the discretization, the
degeneracy of the continuous system is canceled for the resulting discrete scheme. Three different integrators and their
applicability to different electric circuits are investigated. The generality of a unified geometric (and discrete) variational for-
mulation is advantageous for the analysis – for very complex circuits in particular.

By using the geometric approach, the main structure-preserving properties of the (discrete) Lagrangian system can be
derived. In particular, as well known for symplectic integrators, good energy behavior can be observed for long time integra-
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tion and for short simulation times with coarse time steps, whereas non-symplectic methods show significant distortions
(e.g., in energy preservation). In presence of external forces (e.g., dissipation due to resistors), the correct rate of energy
change is obtained. However, the main advantage of using variational integrators for electric circuits can be seen on the
power spectra of the trajectories: the spectrum of high frequencies of the solutions is preserved without having to go for
very long times. To the best of our knowledge, this has not been shown before. Furthermore, invariants (i.e., momentum
maps due to symmetries of the Lagrangian system) can be derived and are preserved in the discrete solution. Going one step
further, we extend the approach to a stochastic and multiscale setting. The generalization to a stochastic setting is motivated
by the fact that real circuits are subject to, for instance, perturbations of the ambient electromagnetic fields, as well as dis-
sipations due to self-resistance and self-radiation. The need for a multiscale extension is because modern circuits, for their
functional purposes, are designed to exhibit dynamics over multiple time scales. Due to the variational framework, the
resulting stochastic integrator well captures the statistics of the solution (see for instance [28]), and the resulting multiscale
integrator is still variational [11].

Outline. In Section 2, we first review the basic notations for electric circuits and introduce a graph representation to de-
scribe the circuit topology. In addition, we introduce a geometric formulation that gives an interpretation of the different
state spaces of a circuit model. Based on the geometric view point, the two (reduced and unreduced) variational formulations
are derived in Section 3. The equivalence of both formulations as well as conditions for obtaining a non-degenerate reduced
system are proven. In Section 4, the construction of different variational integrators for electric circuits is described, and con-
ditions for their applicability are derived. The main structure-preserving properties of the Lagrangian system and the vari-
ational integrator are summarized in Section 5. In Section 6, the approach is extended for the treatment of noisy circuits. In
Section 7, the efficiency of the developed variational integrators is demonstrated by means of numerical examples. A com-
parison with standard circuit modeling and circuit integrators is given. In particular, the applicability of the multiscale meth-
od FLAVOR [11] is demonstrated for a circuit with different time scales.

2. Electric circuits

2.1. Basic notations

For an electric circuit, we introduce the following notations (following [29]): A node is a point in the circuit where two or
more elements meet. A path is a trace of adjoining circuit elements with no elements included more than once. That means it
is a union of adjoining basic elements for which each element is included at most ones. A branch is a path that connects two
nodes. A loop is a path that begins and ends at the same node. A mesh (also called fundamental loop) is a loop that does not
enclose any other loops. A planar circuit is a circuit that can be drawn on a plane without crossing branches.

Let qðtÞ;vðtÞ;uðtÞ 2 Rn be the time-dependent charges, the currents, and the voltages of the circuit elements with t 2 ½0; T�,
where qJðtÞ;v JðtÞ;uJðtÞ 2 RnJ ðJ 2 fL;C;R;VgÞ are the corresponding quantities through the nL inductors, the nC capacitors, the
nR resistors, and the nV voltage sources. In addition, we give each of those devices an assumed current flow direction. In Ta-
ble 1, the characteristic equations for basic elements are listed. For the analysis in this work, we focus on ideal linear circuit
elements, that is we consider the following constitutive laws for each element (nJ ¼ 1; J 2 fL;C;Rg):
uLðtÞ ¼ L _vLðtÞ; vCðtÞ ¼ C _uCðtÞ; uRðtÞ ¼ RvRðtÞ;
with inductance L, capacitance C, and resistance R ¼ G�1 with conductance G and where in general we have _qðtÞ ¼ vðtÞ. The
flux linkage for each element is denoted by pðtÞ 2 Rn and for an inductor, it is defined as the time integral of the voltage
across the inductor. Note that in the case of an inductor (resp. a capacitor), the associated charge qL (resp. flux linkage pC)
is an artificial variable. Similarly, for the resistors and the voltage sources, the associated charges qR; qV and flux linkages
pR; pV are artificial variables.

Ideal inductors and capacitors are purely reactive, that is they dissipate no energy. Thus, the magnetic energy stored in
one inductor with inductance L is
Emag ¼
1
2

Lv2
L :
Table 1
Characteristic equations for basic circuit elements.

Device Linear Nonlinear

Resistor vR ¼ GuR vR ¼ gðuR; tÞ
Capacitor vC ¼ C d

dt uC vC ¼ d
dt qCðuC ; tÞ

Inductor uL ¼ L d
dt vL uL ¼ d

dt pLðvL; tÞ

Device Independent Controlled
Voltage source uV ¼ vðtÞ uV ¼ vðuctrl ;vctrl ; tÞ
Current source v I ¼ iðtÞ v I ¼ vðuctrl; vctrl; tÞ
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The amount of energy storage in one capacitor with capacitance C is
Fig. 1.
zeros.
Eel ¼
Z qC

q¼0
uC dq ¼

Z qC

q¼0

q
C

dq ¼ 1
2

1
C

q2
C :
2.2. Graph representation

Consider now a circuit as a connected, directed graph with n edges and mþ 1 nodes. On the ith edge, there are: a capacitor
with capacitance Ci, an inductor with inductance Li, a voltage source �i, and a resistor with resistance Ri, one or several of
which can be zeros (cf. Fig. 1). Thus, branches in the circuit correspond to edges in the graph. In the special case that each
edge in the graph represents only one circuit element, the number of edges in the graph equals the number of circuit ele-
ments, and the number of nodes of the circuit and the graph are the same. For simplicity, we use the notions from circuit
theory, that is we talk about branches and meshes in the graph.

For the analysis with circuits, one is faced with the following two basic laws:

1. The Kirchhoff Current Law (KCL) states that the sum of currents leading to and leaving from any node is equal to zero.
2. The Kirchhoff Voltage Law (KVL) states that the sum of voltages along each mesh (or fundamental loop) of the network is

equal to zero.

Let K 2 Rn;m be the Kirchhoff Constraint matrix of a given circuit that is represented via a graph defined by
Kij ¼
�1 branch i connected inward to node j

þ1 branch i connected outward to node j

0 otherwise:

8><>: ð1Þ
In the special case where the two ends of an edge are connected to the same node, we set Kij ¼ 0. Since the ground node is
excluded, the Kirchhoff Constraint matrix has only m rather than mþ 1 columns. Allowing only one circuit element for one
branch, either inductor, capacitor, resistor, or voltage source, K can be expressed as
K ¼

KL

KC

KR

KV

0BBB@
1CCCA;
where KJ 2 RnJ ;mðJ 2 fL;C;R;VgÞ is the Constraint Matrix for the set of nL inductors, nC capacitors, nR resistors, and nV voltage
sources, respectively with nL þ nC þ nR þ nV ¼ n. The Kirchhoff Constraint Matrix provides the Kirchhoff current constraints
as KTv ¼ 0. For connected, planar graphs, the number of meshes l is determined via l ¼ n�m, where n is the number of
branches and mþ 1 the number of nodes. This is a direct consequence from Euler’s formula [30]. We can thus define the
Fundamental Loop matrix K2 2 Rn;n�m by
K2;ij ¼
�1 branch i is a backward branch in mesh j

þ1 branch i is a forward branch in mesh j

0 branch i does not belong to mesh j;

8><>: ð2Þ
where again K2 can be expressed as
K2 ¼

K2;L

K2;C

K2;R

K2;V

0BBB@
1CCCA;
with K2;J 2 RnJ ;n�mðJ 2 fL;C;R;VgÞ being the Loop Matrix for the set of nL inductors, nC capacitors, nR resistors, and nV voltage
sources, respectively. The Fundamental Loop Matrix provides the Kirchhoff voltage constraints as KT

2u ¼ 0. An alternative
expression of the Kirchhoff voltage constraints is given by Kû ¼ u, where û are the node voltages of the circuit. By
u 2 kerðKT

2Þ and u 2 imðKÞ it follows directly that kerðKT
2Þ ¼ imðKÞ and thus imðK2Þ ? imðKÞ.
A typical branch of a circuit. On this edge, there are: an inductor Li , a capacitor Ci, a resistor Ri , and a voltage source �i , one or several of which can be
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2.3. Geometric setting

By using a geometric approach for the analysis of circuits, we define the configuration manifold to be the charge space
Q # Rn of circuit branches with points on the manifold denoted by q 2 Q . For a particular charge configuration q, the tangent
bundle TQ is the current space with currents v 2 TqQ # Rn passing through the branches. The corresponding cotangent bundle
T�Q is the flux linkage space with the flux linkages p 2 T�qQ # Rn. Note that due to the analogy with the quantities, configu-
ration, velocity, and momentum in mechanical systems, we stick with the notation ðq;v ; pÞ for charge, current, and flux link-
age. The branch voltages u are the analogy with forces for the mechanical system and are thus assumed to be covectors in the
cotangent space T�qQ .

Let DQ � TQ be a constraint distribution, which is locally given by
DQ ðqÞ ¼ fv 2 TqQ j hwa;vi ¼ 0; a ¼ 1; . . . ;mg � TqQ ; ð3Þ
with the natural pairing h�; �i : T�qQ � TqQ ! R of cotangent and tangent vectors. wa are m independent one-forms that form
the basis for the annihilator D0

Q ðqÞ � T�Q , which is locally given by
D0
Q ðqÞ ¼ fw 2 T�qQ j hw;vi ¼ 0 8v 2 DQ ðqÞg � T�qQ : ð4Þ
DQ ðqÞ and D0
Q ðqÞ are spaces of dimension n�m and m, respectively, and embedded in TqQ and T�qQ , respectively, with local

representatives being in Rn.
By using the matrix KT as local coordinate representation for the one-forms wa, the distribution (3) forms the constraint

KCL space given by the submanifold
DQ ðqÞ ¼ fv 2 TqQ jKTv ¼ 0g � TqQ ;
which is spanned by kerðKTÞ. Note that since Since K is constant, DQ ðqÞ is integrable and thus holonomic. Its annihilator D0
Q ðqÞ

can thus be locally expressed by the image imðKÞ of K. By choosing this coordinate representation and with kerðKT
2Þ ¼ imðKÞ,

the annihilator (4) decribes the constraint KVL space by
D0
Q ðqÞ ¼ fu 2 T�qQ jKT

2u ¼ 0g � T�qQ :
Note that the choices of K and K2 are in general not unique. The only design criterion for K2 is the condition
imðKÞ ? imðK2Þ. Alternative to (2), a matrix K2 can be constructed using a QR-decomposition of K. Thus, this approach is
not restricted to cases, where the mesh topology is obvious as for planar graphs. However, in the following we work with
the Fundamental Loop matrix as candidate for the matrix K2 due to the physical interpretation.

From a geometric point of view, we can distinguish between three different spaces: Let B denote the space of branches, M
the space of meshes, and N the space of nodes, where we exclude the one node defined as ground. ðq;v ; p;uÞ denote the
branch charges, currents, flux linkages, and voltages, and ð~q; ~v ; ~p; ~uÞ and ðq̂; v̂ ; p̂; ûÞ the corresponding quantities in
mesh and node space, respectively. From KCL and KVL, we know that the node currents (and charges) as well as the mesh
voltages are zero. For M and N, we define the corresponding configuration, tangent and cotangent spaces
M # Rn�m; T~qM # Rn�m; T�~qM # Rn�m, and N # Rm; Tq̂N # Rm; T�q̂N # Rm. Then, branch, loop, and node space are defined to be
the Pontryagin bundle which is the direct sum of tangent and cotangent space, that is B ¼ DQ � D0

Q ;M ¼ TM � T�M, and
N ¼ TN � T�N.

The following diagram gives the relation between the defined spaces in terms of the Kirchhoff Constraint matrix K and the
Fundamental Loop matrix K2
T�q̂N �!K D0
Q ðqÞ �!

KT
2 f0g � T�~qM

N B M

nodes branches meshes

f0g � Tq̂N  �K
T

DQ ðqÞ  �K2 T~qM

ð5Þ
with the linear maps K : T�q̂N ! D0
Q ðqÞ and K2 : T~qM ! DQ ðqÞ, and their adjoints KT : D0

Q ðqÞ
� ��

! Tq̂N and KT
2 : DQ ðqÞð Þ� ! T�~qM.

Note that KT restricted to DQ ðqÞ � D0
Q ðqÞ

� ��
maps to f0g � Tq̂N, and KT

2 restricted to D0
Q ðqÞ � DQ ðqÞð Þ� maps to f0g � T�~qM. This

corresponds to the fact that, as stated above, the branch currents that are consistent with the KCL are determined by kerðKTÞ,
where the branch voltages that are consistent with the KVL are given by kerðKT

2Þ. On the other hand, from diagram (5), we can
directly follow that the set of branch currents that satisfy the KCL can alternatively be expressed as v ¼ K2 ~v , whereas the set
of branch voltages that satisfy the KVL are in the image of K as u ¼ Kû. These are the standard relations between branch cur-
rents vðtÞ and mesh currents ~vðtÞ, and branch voltages uðtÞ and node voltages ûðtÞ, respectively, given by KCL and KVL. Note
that diagram (5) represents the general relations between the tangent spaces TqQ ; Tq̂N, and T~qM, and the corresponding
cotangent spaces. The matrices K and K2 are local coordinate choices for the projections to the different spaces. These are
not unique. However, by using different coordinates representations, the submanifolds Tq̂N; T�q̂N; T~qM, and T�~qM lose their
physical meaning.
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Following the lines of [19], the tangent space at q can be split such that TqQ ¼ Hq � Vq, whereHq ¼ DqðqÞ is the horizontal
space and Vq the vertical space at q. The matrix KT is a local matrix representation of the Ehresmann connection Aq : TqQ ! Vq.

Remark 1. A branch can consist of more than one circuit element in a row. In this case, the branch voltage is assumed to be
the sum of the voltages of all elements in this branch.
3. Variational formulation for electric circuits

In the following, we derive the equations of motion for the circuit system by making use of variational principles that are
known in mechanics. We present two different variational formulations that distinguish in the way the constraints (KCL and
KVL) are involved.

3.1. Constrained variational formulation

We can define a Lagrangian L : TQ ! R of the circuit system that consists of the difference between magnetic and electric
energy as
2 Also
Lðq;vÞ ¼ 1
2

vT Lv � 1
2

qT Cq; ð6Þ
with L ¼ diagðL1; . . . ; LnÞ and C ¼ diag 1
C1
; . . . ; 1

Cn

� �
. In the case where no inductor (resp. no capacitor) is on branch i, the cor-

responding entry Li (resp. 1
Ci

) in the matrix L (resp. C) is zero. In the presence of mutual inductors rather than self inductors,

the matrix L is not diagonal anymore but always positive semi-definite. Unless explicitly mentioned, the following theory
and construction are also valid for mutual inductors. The Legendre transform FL : TQ ! T�Q is defined by
FLðq; vÞ ¼ ðq; @L=@vÞ ¼ ðq; LvÞ: ð7Þ
Note that the Lagrangian can be degenerate if the Legendre transform is not invertible. The constraint flux linkage subspace2 is
defined by the Legendre transform as
P ¼ FLðDQ Þ � T�Q ;
where DQ � TQ is the distribution. The Lagrangian force of the system consists of a damping force that results from the resis-
tors and an external force being the voltage sources
fLðq;v ; tÞ ¼ �diagðRÞv þ diagðEÞu; ð8Þ
with R ¼ ðR1; . . . ;RnÞT and E ¼ ð�1; . . . ; �nÞT . If no resistor is on branch i, the corresponding entry Ri in the vector R is zero. For
the entries of the vector E, we have �i ¼ 0 if no voltage source is on branch i and �i ¼ 1 otherwise. Here, we assume that the
time evolution of the voltage sources is given as time dependent function usðtÞ. Thus, in the following, we replace diagðEÞu by
usðtÞ for a given function us : ½0; T� ! Rn.

To derive the equations of motion for the circuit system, we make use of the Lagrange-d’Alembert-Pontryagin principle,
that is we are searching for curves qðtÞ;vðtÞ, and pðtÞ that satisfy dSðq;v ; pÞðdq; dv ; dpÞ ¼ 0. This gives
d
Z T

0
LðqðtÞ; vðtÞÞ þ pðtÞ; _qðtÞ � vðtÞh idt þ

Z T

0
fLðqðtÞ;vðtÞ; tÞ � dqðtÞdt ¼ 0; ð9Þ
with fixed initial and final variations dqð0Þ ¼ dqðTÞ ¼ 0 and constrained variations dq 2 DQ ðqÞ.
Taking variations gives us
Z T

0

@L
@q
þ fL; dq

� �
� h _p; dqi þ dp; _q� vh i þ @L

@v

� �
� p; dv

� �� 	
dt ¼ 0 ð10Þ
for arbitrary variations dv and dp;KTv ¼ 0 and constrained variations dq 2 DQ ðqÞ. This leads to the constrained Euler–La-
grange equations
@L
@q
� _pþ fL 2 D0

Q ðqÞ; ð11aÞ

_q ¼ v ; ð11bÞ

@L
@v � p ¼ 0; ð11cÞ
denoted by the set of primary constraints.



504 S. Ober-Blöbaum et al. / Journal of Computational Physics 242 (2013) 498–530
KTv ¼ 0: ð11dÞ
For the Lagrangian (6) and the forces (8), the constrained Euler–Lagrange equations are
_p ¼ �Cq� diagðRÞv þ us þ Kk; ð12aÞ

_q ¼ v ; ð12bÞ

p ¼ Lv ; ð12cÞ

KTv ¼ 0; ð12dÞ
where k represent the node voltages û 2 T�N. Thus, the first line corresponds to the KVL equations of the form Kû ¼ u, and the
last line are the KCL equations. System (12) is a differential–algebraic system with differential variables q and p and algebraic
variables v and k. The involvement of the function usðtÞmakes the system a non-autonomous system. Eq. (12c) (also denoted
by primary constraints) reflects the degeneracy of the Lagrangian system: since FL is not invertible (i.e., L is singular), we can
not eliminate the algebraic variable v to obtain a purely Hamiltonian formulation. However, in the next step, we eliminate
the algebraic variable k by the use of a reduced constrained variational principle.

3.2. Reduced constrained variational formulation

With the following reduced principle, we derive a slightly different form of the resulting differential–algebraic sys-
tem. This reduced formulation is advantageous from different perspectives: First, the reduced formulation is less redun-
dant such that the Lagrange multipliers are eliminated and the state space dimension is reduced. Second, for specific
circuits, the degeneracy of the Lagrangian is canceled. Third, the reduced state space still has a physical and geometric
interpretation: The reduced Lagrangian is defined on the mesh space TM # R2ðn�mÞ rather than on the branch space
TQ # R2n.

For the reduction, instead of treating the KCL as extra constraint in the form KTv ¼ 0, we directly involve the KCL form
K2 ~v ¼ v with ~v 2 TqM # Rn�m for the definition of the new Lagrangian system. Since K is constant, the constraints are inte-
grable, that is the configurations q are constrained to be in the submanifold
C ¼ fq 2 Q jKT q ¼ 0g
for consistent initial values q0 2 C. This simply means that topological relationships that apply for currents is also sat-
isfied for charges up to a constant vector. Then, we have TqC ¼ DQ ðqÞ and the branch charges q can be expressed by
the mesh charges ~q 2 M # Rn�m as q ¼ K2~q. We define the reduced Lagrangian LM : TM ! R via pullback as
LM :¼ K�2L : TM ! R with
LMð~q; ~vÞ ¼ LðK2~q;K2 ~vÞ ¼ 1
2

~vT KT
2LK2 ~v � 1

2
~qT KT

2CK2~q ð13Þ
with the Legendre transform FLM : TM ! T�M
FLMð~q; ~vÞ ¼ ð~q; @LM=@~vÞ ¼ ð~q;KT
2LK2 ~vÞ:
Dependent on the inductor matrix L and the graph topology, the matrix KT
2LK2 can still be singular, that is the Lagrangian

system can still be degenerate. The cotangent bundle T�M is given by
T�M ¼ fð~q; ~pÞ 2 Rn�m;n�m j ð~q; ~pÞ ¼ FLMð~q; ~vÞ with ð~q; ~vÞ 2 TMg ¼ fð~q; ~pÞ 2 Rn�m;n�m j ð~q; ~pÞ ¼ ð~q;KT
2pÞ with p 2 Pg:
Thus, the reduced force f M
L in T�M is defined as
f M
L ð~q; ~v ; tÞ ¼ KT

2fLðK2~q;K2 ~v; tÞ ¼ �KT
2diagðRÞK2 ~v þ KT

2usðtÞ: ð14Þ
With ~p 2 T�~qM � Rn�m given as ~p ¼ KT
2p we obtain the following reduced Lagrange-d’Alembert-Pontryagin principle
d
Z T

0
LMð~qðtÞ; ~vðtÞÞ þ ~pðtÞ; _~qðtÞ � ~vðtÞ

D E
dt þ

Z T

0
f M
L ð~qðtÞ; ~vðtÞ; tÞ � d~qðtÞdt ¼ 0; ð15Þ
with fixed initial and final variations d~qð0Þ ¼ d~qðTÞ ¼ 0. Taking variations gives us
Z T

0

@LM

@~q
þ f M

L ; d~q
� �

� h _~p; d~qi þ d~p; _~q� ~v
D E

þ @LM

@~v

� �
� ~p; d~v

� �� 	
dt ¼ 0 ð16Þ
for arbitrary variations d~v ; d~p, and d~q. This results in the reduced Euler–Lagrange equations
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@LM

@~q
� _~pþ f M

L ¼ 0; ð17aÞ

_~q ¼ ~v ; ð17bÞ
@LM

@~v �
~p ¼ 0: ð17cÞ
For the Lagrangian (13) and the forces (14), the reduced Euler–Lagrange equations are
_~p ¼ KT
2 �CK2~q� diagðRÞK2 ~v þ usð Þ; ð18aÞ

_~q ¼ ~v ; ð18bÞ
~p ¼ KT

2LK2 ~v : ð18cÞ
Here, the first equation is now the KVL in the form KT
2u ¼ 0, in which the KCL in the form K2 ~v ¼ v is also involved. System

(18) is a differential–algebraic system with differential variables ~q and ~p and algebraic variables ~v . The algebraic Eq. (18c) is
the Legendre transformation of the system. If this is invertible (i.e., the matrix KT

2LK2 is regular), the algebraic variable v can
be eliminated. In this case, the Euler–Lagrange Eq. (18) represent a non-degenerate Lagrangian system.

Remark 2. In classical geometric mechanics, the terminology ‘‘reduction’’ is mainly utilized for symmetry reduction in
mechanics. However, in this contribution, we refer to reduction under constraints and not under symmetries, that is the
dimension n of the tangent space TC is decreased (reduced) to n�m by choosing a new parametrization of variables.

In the following proposition, we show for which cases the reduced Lagrangian system is non-degenerate for LC circuits,
that is for which cases the KVL cancels the degeneracy. The statements for RCL and RCLV circuits can be derived in an anal-
ogous way (see Remark 3(b)).

Proposition 1. For LC circuits (including only self inductors), the system is non-degenerate if the number of capacitors equals the
number of independent constraints that involve the currents through the capacitives branches.
Proof. We have to show that kerðKT
2LK2Þ ¼ f0g. Let nC be the number of capacitors and m the number of Kirchhoff Con-

straints such that KT
C 2 Rm;nC . Let lC 6 m be the number of independent constraints involving the currents through the capac-

itives branches. With nC ¼ lC 6 m we have rankðKT
CÞ ¼ nC , thus kerðKT

CÞ ¼ f0g. On the other hand, we have
kerðLÞ ¼ fv 2 TqQ jvL ¼ 0g
and
RðK2Þ ¼ kerðKTÞ ¼ fv 2 TqQ jKTv ¼ 0g ¼ v 2 TqQ j ðKT
L KT

CÞ
vL

vC

� �
¼ 0


 �
;

With kerðKT
CÞ ¼ f0g this results in
RðK2Þ \ kerðLÞ ¼ fv 2 TqQ jKT
CvC ¼ 0g ¼ f0g ð19Þ
and thus kerðLK2Þ ¼ f0g. Since L is a diagonal matrix, we can split KT
2LK2 into KT

2

ffiffiffi
L
p T ffiffiffi

L
p

K2, where
ffiffiffi
L
p

corresponds to the diag-
onal matrix with diagonal elements

ffiffiffiffi
Li
p

; Li > 0; i ¼ 1; . . . ;n. Since K2 has full column rank, we know with (19) that
ffiffiffi
L
p

K2 also
has full column rank. It follows for y 2 Rn�m and y 2 kerðKT

2LK2Þ that
KT
2LK2y ¼ 0) yT KT

2LK2y ¼ 0() yT KT
2

ffiffiffi
L
p T ffiffiffi

L
p

K2y ¼ 0() k
ffiffiffi
L
p

K2yk2 ¼ 0
and thus y ¼ 0 since kerð
ffiffiffi
L
p

K2Þ ¼ f0g. We therefore have kerðKT
2LK2Þ ¼ kerð

ffiffiffi
L
p

K2Þ ¼ f0g and the matrix KT
2LK2 is

invertible. h
Remark 3.

(a) Intuitively spoken, the degeneracy of the original Lagrangian is due to the lack of magnetic energy terms for the capac-
itors. With each independent constraint on the capacitor currents, one degree of freedom of the system can be
removed. Hence, as many capacitors constraints are required to remove the capacitor current (cf. [14]).

(b) In addition, for a RLC (resp. RCLV) non-degenerate circuit, the number of resistors (resp. and voltage sources) has to
equal the number of independent constraints that involve the currents through the resistor (resp. and voltage source)
branches.
Theorem 1 (Equivalence). The system (11) and the reduced system (17) are equivalent in the following sense:
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(i) Let ð~q; ~p; ~vÞ be a solution of the reduced system (17) and let q ¼ K2~q; v ¼ K2 ~v and ðq; pÞ ¼ FLðq;vÞ. Then ðq;v ; pÞ is a solu-
tion to system (11) and we have ~p ¼ KT

2p.
(ii) Let ðq;v ; pÞ be a solution to system (11) and ~q ¼ Kþ2 q; ~v ¼ Kþ2 v and let ~p ¼ KT

2p with the well-defined pseudo-inverse Kþ2 of
K2 (with Kþ2 K2 ¼ I). Then ð~q; ~p; ~vÞ is a solution of the reduced system (17).
Proof.

(i) Assume that ð~q; ~p; ~vÞ is a solution of (17). From the assumption p ¼ FLðq;vÞ it follows that p� @
@v Lðq;vÞ ¼ 0. With

LM ¼ K�2L we have
@LM

@~q
ð~q; ~vÞ ¼ @L

@~q
ðK2~q;K2 ~vÞ ¼ @q

@~q

� �T
@L
@q
ðK2~q;K2 ~vÞ ¼ KT

2
@L
@q
ðq;vÞ:
Similarly, we have @LM

@~v ð~q; ~vÞ ¼ KT
2
@L
@v ðq; vÞ and thus, it follows that
~p ¼ @L
M

@~v ð
~q; ~vÞ ¼ KT

2
@L
@v ðq;vÞ ¼ KT

2p:
Together with (14), this gives
KT
2 _p ¼ _~p ¼ @L

M

@~q
þ f M

L ¼ KT
2
@L
@q
þ fL

� �
) KT

2
@L
@q
� _pþ fL

� �
¼ 0) @L

@q
� _pþ fL 2 kerðKT

2Þ:
With kerðKT
2Þ ¼ imðKÞ, it follows that
@L
@q
� _pþ fL 2 imðKÞ ¼ D0

Q ðqÞ
as can be seen from diagram (5). Furthermore, we have
_q ¼ K2
_~q ¼ K2 ~v ¼ v
and since we have v ¼ K2 ~v , from diagram (5) it follows that KTv ¼ 0. Both expressions are equivalent formulations of the
KCL.

(ii) Now assume that ðq; p;vÞ is a solution of (11). With kerðKT
2Þ ¼ imðKÞ and (14), it follows immediately that
_~p ¼ KT
2 _p ¼ KT

2
@L
@q
þ fL

� �
¼ @L

M

@~q
þ f M

L :
Furthermore, from _q ¼ v we get Kþ2 _q ¼ Kþ2 v which gives _~q ¼ ~v . Finally, we have ~p ¼ KT
2p ¼ KT

2
@L
@v ¼ @LM

@~v h.
Remark 4. We require the assumption ðq; pÞ ¼ FLðq;vÞ (the fulfillment of the Legendre transformation) in Theorem 1(i) for
the fulfillment of the relation (11c). A unique derivation of p directly from ~p is in general not possible from ~p ¼ KT

2p as it is for
q and v: Although there is a canonical projection KT

2 : T�Q ! T�M, there is no corresponding canonical projection of T�M into
T�Q (see also [1]). By assuming that ~p ¼ KT

2p instead of ðq; pÞ ¼ FLðq;vÞ in (i), we only get the relation KT
2ðp� @L=@vÞ ¼ 0, and

(11c) may not be satisfied.
Remark 5. Statement (i) of Theorem 1 can be interpreted as reconstruction from a given solution on the constrained man-
ifold TM � T�M while statement (ii) defines a map DQ � ðDQ Þ� ! TM � T�M given by ðKþ2 ;K

þ
2 ;K

T
2Þ.

4. Discrete variational principle for electric circuits

In this section, we derive a discrete variational principle that leads to a variational integrator for the circuit system. Since
the solution of the reduced system (17) can be easily transformed to a solution of the full system (11) (Theorem 1), we re-
strict the discrete derivation to the reduced case. For the case of a degenerate reduced system, the choice of discretization is
important to obtain a variational integrator that manages to bypass the difficulty of intrinsic degeneracy, and thus, is appli-
cable for a simulation. In this section, three different discretizations are introduced that result in three different discrete var-
iational schemes for which the solvability conditions are derived.

For the discrete variational derivation, we introduce a discrete time grid Dt ¼ ftk ¼ kh jk ¼ 0; . . . ;Ng;Nh ¼ T , where N is a
positive integer and h the step size. We replace the charge ~q : ½0; T� ! M, the current ~v : ½0; T� ! T~qM, and the flux linkage
~p : ½0; T� ! T�~qM by their discrete versions ~qd : ftkgN

k¼0 ! M; ~vd : ftkgN
k¼0 ! T~qM and ~pd : ftkgN

k¼0 ! T�~qM, where we view
~qk ¼ ~qdðkhÞ; ~vk ¼ ~vdðkhÞ, and ~pk ¼ ~pdðkhÞ as an approximation to ~qðkhÞ; ~vðkhÞ, and ~pðkhÞ, respectively.
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4.1. Forward Euler

We replace the reduced Lagrange-d’Alembert-Pontryagin principle with a discrete version
d h
XN�1

k¼0

LMð~qk; ~vkÞ þ ~pk;
~qkþ1 � ~qk

h
� ~vk

� �� �( )
þ h
XN�1

k¼0

f M
L ð~qk; ~vk; tkÞd~qk ¼ 0; ð20Þ
where in (20) the time derivative _~qðtÞ is approximated by the forward difference operator and the force evaluated at the left
point.

For discrete variations d~qk that vanish in the initial and final points as d~q0 ¼ d~qN ¼ 0 and discrete variations d~vk and d~pk

this gives
@LM

@~v ð
~q0; ~v0Þ � ~p0; d~v0

� �
þ
XN�1

k¼1

@LM

@~q
ð~qk; ~vkÞ �

1
h
ð~pk � ~pk�1Þ þ f M

L ð~qk; ~vk; tkÞ; d~qk

� ��
d~pk�1;

~qk � ~qk�1

h
� ~vk�1

� �

þ @LM

@~v ð
~qk; ~vkÞ � ~pk; d~vk

� �	
þ d~pN�1;

~qN � ~qN�1

h
� ~vN�1

� �
¼ 0: ð21Þ
This leads to the discrete reduced constrained Euler–Lagrange equations
@LM

@~v ð
~q0; ~v0Þ ¼ ~p0; ð22aÞ

@LM

@~q ð~qk; ~vkÞ � 1
h ð~pk � ~pk�1Þ þ f M

L ð~qk; ~vk; tkÞ ¼ 0
~qk�~qk�1

h ¼ ~vk�1

@LM

@~v ð~qk; ~vkÞ ¼ ~pk

9>>=>>;k ¼ 1; . . . ;N � 1; ð22bÞ

~qN � ~qN�1

h
¼ ~vN�1: ð22cÞ
For the Lagrangian defined in (13) and the Lagrangian forces defined in (14), this results in
~p0 ¼ KT
2LK2 ~v0; ð23aÞ

~pk�~pk�1
h ¼ KT

2 �CK2~qk � diagðRÞK2 ~vk þ usðtkÞð Þ
~qk�~qk�1

h ¼ ~vk�1

KT
2LK2 ~vk ¼ ~pk

9>>=>>;k ¼ 1; . . . ;N � 1; ð23bÞ

~qN � ~qN�1

h
¼ ~vN�1: ð23cÞ
This gives the following update rule: For given ð~q0; ~v0Þ, use (23a) to compute ~p0. Then, use the iteration scheme
I 0 0
0 KT

2LK2 �I

hKT
2CK2 hKT

2diagðRÞK2 I

0B@
1CA ~qk

~vk

~pk

0B@
1CA ¼ I hI 0

0 0 0
0 0 I

0B@
1CA ~qk�1

~vk�1

~pk�1

0B@
1CAþ 0

0
hKT

2

0B@
1CAusðtkÞ for k ¼ 1; . . . ;N; ð24Þ
to compute ~q1; . . . ; ~qN; ~v1; . . . ; ~vN and ~p1; . . . ; ~pN .

Proposition 2. System (24) is uniquely solvable if the matrix KT
2ðLþ hdiagðRÞÞK2 is regular.

Proof. System (24) is uniquely solvable if the iteration matrix A ¼
I 0 0
0 KT

2LK2 �I
hKT

2CK2 hKT
2diagðRÞK2 I

0@ 1A has zero nullspace. For

Az ¼ 0 with z ¼ ð~q; ~v ; ~pÞ, we have (i) ~q ¼ 0, (ii) ~p ¼ KT
2LK2 ~v , (iii) hKT

2CK2~qþ hKT
2diagðRÞK2 ~v þ ~p ¼ 0. Substituting (i) and

(ii) in (iii) gives KT
2ðLþ hdiagðRÞÞK2 ~v ¼ 0. Thus, z ¼ 0 is the unique solution of Az ¼ 0 iff KT

2ðLþ hdiagðRÞÞK2 has zero null-

space. h
4.2. Backward Euler

If we approximate the time derivative _~qðtÞ by the backward difference operator rather than by the forward difference
operator as
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d h
XN

k¼1

LMð~qk; ~vkÞ þ ~pk;
~qk � ~qk�1

h
� ~vk

� �� �( )
þ h
XN

k¼1

f M
L ð~qk; ~vk; tkÞd~qk ¼ 0; ð25Þ
with discrete variations d~qk that vanish in the initial and final points as d~q0 ¼ d~qN ¼ 0 and discrete variations d~vk and d~pk, we
obtain
d~p1;
~q1 � ~q0

h
� ~v1

� �
þ @LM

@~v ð
~q1; ~v1Þ � ~p1; d~v1

� �
þ
XN

k¼2

d~pk;
~qk � ~qk�1

h
� ~vk

� ��

þ @LM

@~q
ð~qk�1; ~vk�1Þ �

1
h
ð~pk � ~pk�1Þ þ f M

L ð~qk�1; ~vk�1; tk�1Þ; d~qk�1

� �
þ @LM

@~v ð
~qk; ~vkÞ � ~pk; d~vk

� �	
¼ 0: ð26Þ
This gives a slight, but in this case significant, modification for the Euler–Lagrange equations as
~q1 � ~q0

h
¼ ~v1; ð27aÞ

@LM

@~v ð
~q1; ~v1Þ ¼ ~p1; ð27bÞ

@LM

@~q ð~qk�1; ~vk�1Þ � 1
h ð~pk � ~pk�1Þ þ f M

L ð~qk�1; ~vk�1; tk�1Þ ¼ 0
~qk�~qk�1

h ¼ ~vk

@LM

@~v ð~qk; ~vkÞ ¼ ~pk

9>>=>>;k ¼ 2; . . . ;N: ð27cÞ
Note that in contrast to the variational scheme (22) that consists of an explicit update for the charges q and an implicit up-
date for the fluxes p, we now get an implicit scheme for q and an explicit scheme for p. In particular, for the Lagrangian (13)
and the forces (14), we obtain the following update rule: for given ð~q0; ~v0Þ compute ~p0 via ~p0 ¼ KT

2LK2 ~v0. Then, use the iter-
ation scheme
I �hI 0
0 KT

2LK2 �I

0 0 I

0B@
1CA ~qk

~vk

~pk

0B@
1CA ¼ I 0 0

0 0 0
�hKT

2CK2 �hKT
2diagðRÞK2 I

0B@
1CA ~qk�1

~vk�1

~pk�1

0B@
1CAþ 0

0
hKT

2

0B@
1CAusðtk�1Þ for k ¼ 1; . . . ;N; ð28Þ
to compute ~q1; . . . ; ~qN; ~v1; . . . ; ~vN and ~p1; . . . ; ~pN .

Proposition 3. System (28) is uniquely solvable if the matrix KT
2LK2 is regular.

Proof. System (28) is uniquely solvable if the iteration matrix A ¼
I �hI 0
0 KT

2LK2 �I
0 0 I

0@ 1Ahas zero nullspace. For Az ¼ 0 with

z ¼ ð~q; ~v ; ~pÞ, we have (i) ~q ¼ h~v , (ii) ~p ¼ KT
2LK2 ~v , (iii) ~p ¼ 0. Thus, z ¼ 0 is the unique solution of Az ¼ 0 iff KT

2LK2 has zero null-

space. h

Proposition 3 says that whenever the KCL cancels the degeneracy of the system, the backward Euler scheme is applicable,
whereas the forward Euler scheme is applicable to a wider class of circuit systems (cf. Proposition 2) for h sufficiently large.
The resulting variational Euler schemes (22) and (27) consisting of a combination of implicit and explicit updates are first
order variational integrators. The construction of higher order implicit schemes (e.g., variational partitioned Runge–Kutta
(VPRK) methods along the lines of [31]) allows the simulation of arbitrary circuits. As an example, we present in the follow-
ing a variational integrator based on the implicit midpoint rule.

4.3. Implicit midpoint rule

We introduce internal stages eQ k; ePk; eV k; k ¼ 1; . . . ;N � 1 that are given on a second time grid
Ds ¼ fsk ¼ ðkþ 1

2Þh jk ¼ 0; . . . ;N � 1g and define the internal stage vectors eQ d : fskgN�1
k¼0 ! M; eV d : fskgN�1

k¼0 ! T~qM andePd : fskgN�1
k¼0 ! T�~qM to be eV k ¼ ~vðtk þ 1

2 hÞ; eQ k ¼ ~qk þ 1
2 heV k; ePk ¼ @LM

@~v ðeQ k; eV kÞ. The approximations at the nodes are then deter-
mined by the internal stages via ~qkþ1 ¼ ~qk þ heV k and ~pkþ1 ¼ ~pk þ h @LM

@~q ðeQ k; eV kÞ.
By taking variations d~qk; deQ k; d~pk; dePk; deV k for the following discrete Lagrange-d’Alembert-Pontryagin principle with

dqN ¼ 0 but free d~q0 and initial value ~q0
d h
XN�1

k¼0

LMðeQ k; eV kÞ þ ePk;
eQ k � ~qk

h
� 1

2
eV k

* +
þ ~pkþ1;

~qkþ1 � ~qk

h
� eV k

� � !
þ h~p0; ~q0 � ~q0i

( )
þ h
XN�1

k¼0

f M
L ðeQ k; eV k; skÞdeQ k ¼ 0

ð29Þ
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gives
 XN�1

k¼0

@LM

@~q
ðeQ k; eV kÞ þ

ePk

h
þ f M

L ðeQ k; eV k; skÞ; d eQ k

* +
þ @LM

@~v ð
eQ k; eV kÞ �

1
2
ePk � ~pkþ1; deV k

� �"

þ dePk;
eQ k � ~qk

h
� 1

2
eV k

* +
þ d~pkþ1;

~qkþ1 � ~qk

h
� eV k

� �
þ �ePk � ~pkþ1 þ ~pk

h
; d~qk

* +#
þ d~p0; ~q0 � ~q0 �

¼ 0: ð30Þ
The Euler–Lagrange equations are
@LM

@~q
ðeQ k; eV kÞ þ

ePk

h
þ f M

L ðeQ k; eV k; skÞ ¼ 0; ð31aÞ

@LM

@~v ð
eQ k; eV kÞ �

1
2
ePk � pkþ1 ¼ 0; ð31bÞeQ k � ~qk

h
� 1

2
eV k ¼ 0; ð31cÞ

~qkþ1 � ~qk

h
� eV k ¼ 0; ð31dÞ

� ePk � ~pkþ1 þ ~pk ¼ 0; k ¼ 0; . . . ;N � 1; ð31eÞ
~q0 � ~q0 ¼ 0: ð31fÞ
By eliminating ePk by Eq. (31e) together with eV k ¼ ~vkþ1
2
; eQ k ¼

~qkþ~qkþ1
2 (which follows from (31c) and (31d)) and

sk ¼ tkþtkþ1
2 ¼ tkþ1

2
leads to the iteration scheme
~pkþ1 ¼ ~pk þ h
@LM

@~q
~qk þ ~qkþ1

2
; ~vkþ1

2

� �
þ hf M

L

~qk þ ~qkþ1

2
; ~vkþ1

2
; tkþ1

2

� �
; ð32aÞ

~qkþ1 ¼ ~qk þ h~vkþ1
2
; ð32bÞ

~pk þ ~pkþ1

2
¼ @L

M

@~v
~qk þ ~qkþ1

2
; ~vkþ1

2

� �
; k ¼ 0; . . . ;N � 1: ð32cÞ
Remark 6. The integrator (32) is equivalent to a Runge–Kutta scheme with coefficients a ¼ 1
2 ; b ¼ 1; c ¼ 1

2 (implicit midpoint
rule integrator) applied to the corresponding Hamiltonian system.

For the circuit case with Lagrangian (13) and forces (14), we start with given ð~q0; ~p0Þ to solve iteratively for
ð~qkþ1; ~vkþ1

2
; ~pkþ1Þ; k ¼ 0; . . . ;N � 1 for given usðtÞ using the scheme
I �hI 0
0 KT

2LK2 � 1
2 I

1
2 hKT

2CK2 hKT
2diagðRÞK2 I

0B@
1CA ~qkþ1

~vkþ1
2

~pkþ1

0B@
1CA ¼ I 0 0

0 0 1
2 I

� 1
2 hKT

2CK2 0 I

0B@
1CA ~qk

~vk�1
2

~pk

0B@
1CAþ 0

0
hKT

2

0B@
1CAus tkþ1

2

� �
ð33Þ
for k ¼ 0; . . . ;N � 1.

Remark 7. The discrete current ~vkþ1
2
, which plays the role of the algebraic variable in the continuous setting, is only

approximated between two discrete time nodes tk and tkþ1. Also, note that ~vk�1
2

is not explicitly used for the computation of
ð~qkþ1; ~vkþ1

2
; ~pkþ1Þ (which corresponds to a zero column in the matrix of the right hand side of (33)). This means that the

computation of the magnitudes at time point tkþ1 depends only on the discrete magnitudes within the time interval ½tk; tkþ1�,
which is characteristic for a one-step scheme. In particular, ~v�1

2
ðk ¼ 0Þ is a pseudo-variable that is not used.
Proposition 4. System (33) is uniquely solvable if the matrix KT
2ð2Lþ hdiagðRÞ þ 1

2 h2CÞK2 is regular.

Proof. System (33) is uniquely solvable if the iteration matrix A ¼
I �hI 0
0 KT

2LK2 � 1
2 I

1
2 hKT

2CK2 hKT
2diagðRÞK2 I

0@ 1A has zero nullspace. For

Az ¼ 0 with z ¼ ð~q; ~v ; ~pÞ, we have (i) ~q ¼ h~v , (ii) ~p ¼ 2KT
2LK2 ~v , (iii) 1

2 hKT
2CK2~qþ hKT

2diagðRÞK2 ~v þ ~p ¼ 0. Substituting (i) and (ii)

in (iii) gives KT
2ð2Lþ hdiagðRÞ þ 1

2 h2CÞK2 ~v ¼ 0. Thus, z ¼ 0 is the unique solution of Az ¼ 0 if KT
2ð2Lþ hdiagðRÞ þ 1

2 h2CÞK2 has

zero nullspace. h

Note that for linear circuits, the condition given in Proposition 4 is satisfied for h sufficiently large if the continuous sys-
tem (18) has a unique solution.



510 S. Ober-Blöbaum et al. / Journal of Computational Physics 242 (2013) 498–530
Remark 8 (Condition numbers). From Proposition 1, we see that the continuous reduced system (17) may be still degenerate
due to the intrinsic degeneracy of the circuit topology and configuration. On the discrete side, both the forward Euler and the
midpoint integrator show some regularization property: by perturbing KT

2LK2 in magnitude proportional to the time step
size h, both integrators can render the degenerate continuous reduced system (17) into regular discrete systems (24) and
(33), respectively. However, this regularization comes at the price of possible large condition numbers as explained in the

following. The iteration matrices A of the different schemes can be written as A ¼ A0 þ hE with A0 ¼
I 0 0
0 KT

2LK2 �I
0 0 I

0@ 1A and E

given by the respective iteration scheme. If the reduced system is regular (i.e., KT
2LK2 is non singular), A0 is non singular with

positive constant condition number jðA0Þ and jðAÞ approaches a positive constant when the step size h goes to zero (e.g., one
can compute the singular values of the perturbed matrix A0 þ hE using arguments from perturbation theory). In this case, all
iteration schemes are well conditioned independent of the step size h. However, if the reduced system is degenerate, that is
KT

2LK2 is singular, also A0 is singular and the condition numbers of the forward Euler and the midpoint scheme grow
reciprocally to the time step size h, that is jðAÞ 	 Oð1=hÞ for small h. When the circuit topology is fixed, the circuit’s physical
parameters are constants and the time step h is also fixed, preconditioner can be precomputed and applied to the systems
(24) and (33) to improve their numerical stabilities. Since this work mainly focuses on the theoretical aspects of variational
integrators, we leave this stability issues for future work and assume thereafter no such issues in the subsequent discussion.
Remark 9 (Discussion on general DAE integration methods). By deriving the discrete variational schemes, we constructed spe-
cial integrators for the simulation of DAE systems. In general, integration methods for DAE systems can be divided into two
main classes, namely one-step methods (such as implicit Runge–Kutta methods) and multi-step methods (such as BDF meth-
ods). These are typically well-suited for numerical solutions of index 1 DAE systems, while difficulties my arise for systems of
higher index ([32]). Thus, index reduction techniques are applied to transform DAE systems of higher index to index 1 DAE
systems via differentiation of the algebraic constraint. This comes with the drawback of violation of the algebraic constraint,
which is no longer present during the numerical integration. To overcome this, several stabilization techniques have been
proposed (for an overview see for example [32] and references therein). In geometric integration, variational and other geo-
metric integrators such as Rattle and Shake [33] (which have been shown to be variational as well [1]) have been developed
for the integration of DAE systems, where the algebraic part stems from the presence of holonomic or nonholonomic con-
straints. In this work, not only the presence of the KVL constraints but also the intrinsic degeneracy of the Lagrangian causes
the differential–algebraic nature of the Euler–Lagrange equations. Thus, besides the KVL constraints, which are the holonom-
ic constraints, also the primary constraints are part of the algebraic equations. The reduced formulation eliminates the hol-
onomic constraints by choosing a new set of coordinates that parametrize the constraint KVL space, however, the primary
constraints are still involved. To the best of our knowledge, the presented approach is the first one for the variational inte-
gration of DAE system resulting from primary constraints. Of course, general DAE integrators such as BDF methods or impli-
cit Runge–Kutta methods, which do not rely on the geometric structure of the problem, do not distinguish between the
origin of the algebraic equation. They can be applied as well. However, they do not preserve the geometric properties as
demonstrated by means of numerical examples in Section 7.
5. Structure-preserving properties

In this section, we summarize the main structure-preserving properties of variational integrators (see for example [1])
and their interpretation for the case of electric circuits.

5.1. Symplecticity and preservation of momentum maps induced by symmetries

Symplecticity. In the case of conservative systems, the flow on T�Q of the Euler–Lagrange equations preserves the canon-
ical symplectic form X ¼ dqi ^ dpi ¼ dh of the Hamiltonian system, where h ¼ pidqi is the canonical one-form. Variational
integrators are symplectic, that is the same property holds for the discrete flow of the discrete Euler–Lagrange equations;
the canonical discrete symplectic form X ¼ dqi

0 ^ dpi
0 is exactly preserved for the discrete solution. Thus, in the case that

the reduced formulation leads to a non-degenerate Lagrangian, there is a well-defined non-degenerate symplectic form,
which is preserved by our iteration scheme. By using techniques from backward error analysis (see for example [33]), it
can be shown that symplectic integrators also have good energy properties, that is for long-time integrations, there is no
artificial energy growth or decay due to numerical errors. This can also be observed for our circuit examples in Section 7.
In the case of linear LC circuits that involve a quadratic potential, a second order variational integrator, for example the mid-
point variational integrator as derived in Section 4.3, exactly preserves the energy (magnetic plus electric energy).

Conformal symplecticity. In the presence of resistors, the system is dissipative and the symplectic form is not preserved
anymore. However, in general, conformal symplecticity can be shown if the dissipative forces are uniform, that is the dissi-
pation matrix is a scalar. Formally, let ut denote the flow map of the Hamiltonian system with dissipation. Note that by
assuming that f M

L ¼ c~p; c 2 R, the Euler–Lagrange equations in (17) can also be derived by introducing the action integral
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Sð~q; ~v ; ~pÞ ¼
Z T

0
expðctÞ LMð~qðtÞ; ~vðtÞÞ þ ~pðtÞ; _~qðtÞ � ~vðtÞ

D Eh i
dt ð34Þ
and by taking variations as dSð~q; ~v ; ~pÞ � ðd~q; d~v; d~pÞ ¼ 0. Now we restrict S to the space of pathwise unique solutions, which
can be identified with the set of initial conditions. The restricted action can be expressed as Ŝ : TQ � T�Q ! R. One then
computes
dŜð~qð0Þ; ~vð0Þ; ~pð0ÞÞ � ðd~qð0Þ; d~vð0Þ; d~pð0ÞÞ ¼ expðctÞh~p; d~qijT0: ð35Þ
These boundary terms define in local coordinates the one-form expðctÞh on T�Q . Computing d2
Ŝ gives the conservation of

expð�ctÞX under the flow map, thus we have ðutÞ
�X ¼ expð�ctÞX for all t. Note that for the case of the electric circuit,

the condition f M
L ¼ c~p includes that KT

2diagðRÞK2ðKT
2LK2Þ�1 can be written as diagonal matrix diagðcÞ with diagonal entries

c by assuming that the reduced Lagrangian LM is non-degenerate.
Now let uN

h : T�Q ! T�Q denote N steps of an integrator that approximates the flow map. The algorithm is conformally
symplectic if ðuN

h Þ
�X ¼ expð�chNÞX. This means that a discrete scheme that is conformally symplectic exactly preserves

the rate of decay of the symplectic form. Consequently, one would expect that a conformally symplectic integrator would
preserve the rate of energy decay much better than integrators, which are not conformally symplectic. In Section 7.2, we
numerically show for an RLC circuit, that indeed the variational integrators constructed in Section 4 preserve the rate of en-
ergy decay much better than a Runge–Kutta or a BDF method. The proof of conformal symplecticity in the discrete case is
analogous to that of Theorem 4.1 of [34].

Preservation of momentum maps induced by symmetries Noether’s theorem states that momentum maps that are induced
by symmetries in the system are preserved. More precisely, let G be a Lie group acting on Q by U : G� Q ! Q . We write
Ug :¼ Uðg; �Þ. The tangent lift of this action UTQ : G� TQ ! TQ is given by UTQ

g ðvqÞ ¼ TðUgÞ � vq with vq 2 TQ . The action is
associated with a corresponding momentum map J : TQ ! g�, where g� is the dual of the Lie algebra g of G. The momentum
map is defined by
hJðq;vÞ; ni ¼ @L
@v ; nQ ðqÞ
� �

¼ hp; nQ ðqÞi 8n 2 g;
where nQ is the infinitesimal generator of the action on Q, that is nQ ðqÞ :¼ d
dt

��
t¼0UðexpðtnÞ; qÞ and exp : g! G is the

exponential function. A holonomic system that is described by a Lagrangian L and a holonomic constraint hðqÞ ¼ 0
has a symmetry if the Lagrangian and the constraint are both invariant under the (lift of the) group action, that is
L 
UTQ

g ¼ L and h 
UgðqÞ ¼ 0 for all g 2 G. Noether’s theorem states that if the system has a symmetry, the corre-
sponding momentum map is preserved. In presence of external forces, this statement is still true if the force is
orthogonal to the group action. The discrete version of Noether’s theorem [1] states that if the discrete Lagrangian
has a symmetry, the corresponding momentum map is still preserved. The variational integrator based on this dis-
crete Lagrangian is thus exactly momentum-preserving. For constrained and forced systems, the preservation still
holds with the additional invariance and orthogonality conditions on constraints and forces analogous to the con-
tinuous case.

If we consider an electric circuit, we are faced with a constrained distribution given by the KCL and external forces due to
resistors and voltage sources. The KCL are formulated on the tangent space; however, since these are linear, they are inte-
grable, and the KCL can be formulated on the configuration space. Thus, in the following, we are able to apply the theory of
holonomic systems to derive a preserved quantity for an eletrical circuit under some topology assumptions of the underlying
graph.

Proposition 5 (Invariance of Lagrangian). The Lagrangian (6) of the unreduced system is invariant under the translation of qL.
Proof. Consider the group G ¼ RnL with group element g 2 G. Let U : G� Q ! Q be the action of G defined as
Uðg; qÞ ¼ ðqL þ g; qCÞ for each g 2 G with tangent lift UTQ : G� TQ ! TQ ;UTQ ðg; ðq;vÞÞ ¼ ðqL þ g; qC ; qR; qV ;vL;vC ;vR;vV Þ. Then,
we have
L 
UTQ
g ðq;vÞ ¼

1
2

vL

vC

vR

vV

0BBB@
1CCCA

T

L

vL

vC

vR

vV

0BBB@
1CCCA� 1

2

qL þ g

qC

qR

qV

0BBB@
1CCCA

T

C

qL þ gL

qC

qR

qV

0BBB@
1CCCA ¼ 1

2
vT Lv � 1

2
qT Cq ¼ Lðq;vÞ;
since C ¼ diag 1
C1
; . . . ; 1

Cn

� �
with the first nL diagonal elements being zero. h

Assumption 1 (Topology assumption). For every node j; j ¼ 1; . . . ;m in the circuit (except ground), the same amount of inductor
branches connect inward and outward to node j.
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In particular, Assumption 1 implies that the sum of each row of KT
L is zero, that is

PnL
j¼1ðK

T
L Þij ¼ 0 for i ¼ 1; . . . ;m.

Proposition 6 (Invariance of distribution). Under Assumption 1, the KCL on configuration level are invariant under equal
translation of qL.
Proof. The group element g 2 G that describes an equal translation of all components of qL can be expressed as g ¼ a1 with
a 2 R and 1 being a vector in RnL with each component 1. It follows that
KT 
UgðqÞ ¼ KT

qL þ g

qC

qR

qV

0BBB@
1CCCA ¼ KT qþ KT

L g ¼ KT qþ KT
L 1a ¼ KT q;
since the sum of each row of KT
L is zero. h
Proposition 7 (Orthogonality of external force). The external force fL (8) is orthogonal to the action of the group G ¼ RnL being
translations of qL.
Proof. Let n 2 g ¼ RnL be an element of the Lie algebra. For the group action UgðqÞ ¼ ðqL þ g; qC ; qR; qV Þ, the infinitesimal gen-
erator can be calculated as
nQ ðqÞ ¼
d
dt

����
t¼0

Uexp tnðqÞ ¼
d
dt

����
t¼0
ðqL þ exp tn; qC ; qR; qV Þ ¼ ðn;0;0;0Þ:
Thus, we have
hfL; nQ ðqÞi ¼ h�diagðRÞv þ diagðEÞu; nQ ðqÞi ¼ 0;
since diagðRÞ and diagðEÞ have zero entries in the first nL lines and columns. h
Theorem 2 (Preservation of flux). Under Assumption 1, the sum of all inductor fluxes in the electric circuit described by the
Lagrangian (6), the external forces (8), and the KCL is preserved.
Proof. From Proposition 5–7 we know that the Lagrangian and the KCL are invariant under the group action
UgðqÞ ¼ ðqL þ g; qC ; qR; qV Þ with g 2 G ¼ RnL and the external force fL is orthogonal to this group action. It follows with Noe-
ther’s theorem that the induced momentum map is preserved by the flow of the system. For the momentum map, we
calculate
hJðq; vÞ; ni ¼ @L
@v ; nQ ðqÞ
� �

¼ @L
@v i

ni
Q ðqÞ ¼

@L
@vLi

ni:
Thus, the preserved momentum map is Jðq;vÞ ¼
PnL

i¼1pnLi
, which is the sum of the fluxes of all inductors in the circuit. h

Remark 10 (Proof based on Euler–Lagrange equations). An alternative proof can be derived based on the Euler–Lagrange
equations in the following way. From (12a), we have
_pL ¼ KLk:
For the time derivative of the sum of all inductors, it follows that
d
dt

XnL

i¼1

pi ¼
XnL

i¼1

_pi ¼
XnL

i¼1

Xm

j¼1

ðKLÞijkj ¼
Xm

j¼1

kj

XnL

i¼1

ðKLÞij ¼ 0;
since with Assumption 1, we have 0 ¼
PnL

i¼1ðK
T
L Þji ¼

PnL
i¼1ðKLÞij for j ¼ 1; . . . ;m. Thus,

PnL
i¼1pi is preserved.
Remark 11 (Momentum map for reduced system). Also, for the reduced system described by the Lagrangian (13), the same
momentum map can be computed by considering the group action U~gð~qÞ ¼ ~qþ ~g with the group element ~g 2 eG � Rn�m

defined as ~g ¼ Kþ2
g
0

� �
with Kþ2 being the well-defined pseudo-inverse of K2.

Lemma 1 (Preserved momentum map). For any linear circuit that is described by the Lagrangian (6) the external forces (8), and
the KCL, the momentum map defined by gT @L

@v with g 2 kerðKT
L Þ is preserved.
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Proof. By using the Euler–Lagrange equations, we see immediately
d
dt

gT @L
@v ¼ gT _p ¼ gT KLk ¼ 0;
since gT 2 kerðKT
L Þ ? imðKLÞ 3 KLk and thus, gT @L

@v ¼ const. h

The discrete Lagrangian system that includes constraints and forces introduced in Section 4 inherits the same symmetry
and orthogonality property as the continuous system. Due to the discrete Noether theorem, the resulting variational integra-
tors exactly preserves the sum of inductor fluxes under Assumption 1 (compare Section 7.4 for a numerical example).

5.2. Frequency spectrum

As can be observed in numerical examples (see Section 7), the frequency spectrum of the discrete solutions is much better
preserved by using variational integrators rather than other integrators.

We want to analytically demonstrate this phenomenon by means of a simple harmonic 1d oscillator. Assume that the
curves ðqðtÞ; pðtÞÞ on ½0; T� describe the oscillatory behavior of the system. Consider the discrete solution fðqk; pkÞg

N
k¼0 defined

on the discrete time grid ftkgn
k¼0 with t0 ¼ 0; tN ¼ T and h ¼ tkþ1 � tk that is obtained from the one-step update scheme

ðqkþ1; pkþ1Þ
T ¼ Aðqk; pkÞ

T
; k ¼ 0; . . . ;N � 1, where A 2 R2;2 depends on the constant time step h. As known from variational

integrator theory [1], the discrete solution fðqk; pkÞg
N
k¼0 converges to the solution ðqðtÞ; pðtÞÞ for decreasing h. Since this solu-

tion is oscillating and due to the convergence of the scheme, at least one eigenvalue k1 of A has to be complex (with nonzero
imaginary part) for a small enough time step h. Since A 2 R2;2, the second eigenvalue k2 has to be complex conjugate to the
first one. Thus, the corresponding eigenvectors are linearly independent and A is diagonalizable as A ¼ QVQ�1 with
V ¼ diagðk1; k2Þ. With the coordinate transformation ðxk; ykÞ

T ¼ Q�1ðqk; pkÞ
T we have ðxkþ1; ykþ1Þ

T ¼ Vðxk; ykÞ
T , that is

xkþ1 ¼ k1xk and ykþ1 ¼ k2yk.
We demonstrate the preservation of the frequency spectrum for the 1d oscillator in two steps: (i) We show that for a con-

vergent scheme the update matrix A has two eigenvalues both of norm 1 if and only if the update scheme is symplectic. (ii)
We show that methods defined by matrices with norm 1 eigenvalues preserve the frequency spectrum defined on different
time spans.

(i) ‘‘(’’: Assume that the scheme defined by A is symplectic, then detðAÞ ¼ 1 (see for example [35]). It follows with k1

complex conjugate to k2 (k2 ¼ k�1): 1 ¼ detðQÞ � detðVÞ � detðQ�1Þ ¼ k1 � k2 ¼ jk1j2 ¼ jk2j2 and thus jkij ¼ 1; i ¼ 1;2.
‘‘)’’: Assume that A has two complex conjugate eigenvalues k1 ¼ k�2 with jk1j ¼ jk2j ¼ 1, that is we write k1 ¼ eih

and k2 ¼ e�ih with h 2 R and V ¼ diagðeih; e�ihÞ. Note that h depends on the constant time step h that is used for the

discretization. Let J ¼ 0 1
�1 0

� �
be the canonical symplectic form and introduce the non-canonical symplectic form

eJ ¼ Q T JQ . We show that V preserves eJ , and therefore A preserves J, that is A is symplectic. Since J is skew-symmetric

with zero diagonal, eJ is of the form 0 M

�M 0

� �
with M 2 R. It follows that
VTeJV ¼ eih 0
0 e�ih

 !
0 M

�M 0

� �
eih 0
0 e�ih

 !
¼ 0 eihe�ih

M

�e�iheih
M 0

 !
¼

0 M

�M 0

� �
¼ eJ:
(ii) Suppose that the discrete values x1; x2; . . . ; xN determined by the update scheme A are known, and admit the following
discrete inverse Fourier transformation
xk ¼
1
N

XN

n¼1

~xn exp
2pi
N

kn
� �

; k ¼ 1; . . . ;N:
Consider a sequence of discrete points fXkgN
k¼1 that is shifted by one time step such that Xk ¼ xkþ1 ¼ k1xk; k ¼ 1; . . . ;N, that is

fXkgN
k¼1 approximates the solution on a later time interval than fxkgN

k¼1. This admits the following discrete inverse Fourier
transformation
Xk ¼
1
N

XN

n¼1

k1~xn exp
2pi
N

kn
� �

; k ¼ 1; . . . ;N;
that is eXn ¼ k1~xn. By the definition of the frequency spectrum, we have eX �neXn ¼ ~x�nk
�
1k1~xn ¼ ~x�njk1j2~xn ¼ ~x�n~xn, where the last

equality relies on the symplecticity. By shifting the discrete solution arbitrary times, we see that the spectrum will be pre-
served using different time intervals for the frequency analysis. This means that, in particular for long-time integration, a
frequency analysis on a later time interval yields the same results as on an earlier time interval, which we denote by pres-
ervation of the frequency spectrum. The analysis for y follows analogously, and with the linear transformation Q the same
holds for q and p. On the other hand, if jki;jj– 1; i; j ¼ 1;2 (such as for non-symplectic or non-convergent methods), the fre-
quency spectrum will either shrink or grow unbounded.



514 S. Ober-Blöbaum et al. / Journal of Computational Physics 242 (2013) 498–530
Although the analysis was only performed for the simple case of a 1d harmonic oscillator (in particular statement (i) is
restricted to this case), we believe that for higher-dimensional systems, a similar statement as in (ii) can also be shown,
which is left for future work.

Relation to numerical results For the numerical computations in Section 7, we perform a frequency analysis in two different
ways: Firstly, we calculate the frequency spectrum on different time subintervals of the overall time integration interval
½0; T�. This is directly connected to the analytical result of frequency preservation: We can observe that the spectrum is inde-
pendent on the specific time interval if a symplectic integrator is used; however, by using a non-symplectic method, the
spectrum is damped if it is calculated on a later time interval. Secondly, we use a fixed time interval ½0; T� for the frequency
analysis but use different time steps which results in different iteration matrices A. As we saw for the harmonic oscillator, the
magnitude of the two eigenvalues is independent on the time step h if a symplectic integrator is used, however, it might de-
or increase for increasing h for a non-symplectic method (e.g., if the explicit Euler method is used, the absolute value of the
eigenvalues is 1þOðh2Þ and the frequency spectrum would grow for larger h).

6. Noisy circuits

In this section, we extend the constructed variational integrator to the simulation of noisy electric circuits for which noise
is added to each edge of the circuit. Following the description in [10], in the stochastic setting, the constrained stochastic
variational principle is
d
Z T

0
LðqðtÞ; vðtÞÞ þ pðtÞ; _qðtÞ � vðtÞh idt þ

Z T

0
fLðqðtÞ;vðtÞ; tÞ � dqðtÞdt þ

Z T

0
dqðtÞ � ðR 
 dWtÞ ¼ 0 ð36Þ
with constrained variations dq 2 DQ ðqÞ, where R is a n� n matrix, usually constant and diagonal, which indicates the ampli-
tude of noise at each edge, Wt is a n-dimensional Brownian motion, and the last stochastic integral is in the sense of Stra-
tonovich. This principle leads to the constrained stochastic differential equation
@L
@q
� _pþ fL þ R 
 dWt

dt
2 D0

Q ðqÞ; ð37aÞ

dq ¼ vdt; ð37bÞ

@L
@v � p ¼ 0; ð37cÞ

KTv ¼ 0; ð37dÞ
where by (37a), we mean that we have
R T

0
@L
@q dt � dpþ fLdt þ R 
 dWt

� �
¼
R T

0 XðqÞdt for a vector field XðqÞ 2 D0
Q ðqÞ for any T.

Correspondingly, the reduced stochastic variational principle reads
d
Z T

0
LMð~qðtÞ; ~vðtÞÞ þ ~pðtÞ; _~qðtÞ � ~vðtÞ

D E
dt þ

Z T

0
f M
L ð~qðtÞ; ~vðtÞ; tÞ � d~qðtÞdt þ

Z T

0
d~qðtÞ � ðKT

2R 
 dWtÞ ¼ 0: ð38Þ
This results in the reduced stochastic Euler–Lagrange equations
@LM

@~q
dt � d~pþ f M

L dt þ KT
2R 
 dWt ¼ 0; ð39aÞ

d~q ¼ ~vdt; ð39bÞ

@LM

@~v �
~p ¼ 0: ð39cÞ
To derive the discrete equations with noise, the Stratonovich integral is approximated by a discrete version. For simplic-
ity, we present the equations for the forward Euler iteration scheme only. On the interval ½tk; tkþ1� the integralR tkþ1

tk
d~qðtÞ � ðKT

2R 
 dWtÞ is approximated by the discrete expression d~qk � ðKT
2RÞB

k with Bk � Nð0;hÞ; k ¼ 0; . . . ;N � 1 (see also
[10]). In this way, we obtain the following reduced stochastic discrete variational principle
d h
XN�1

k¼0

LMð~qk; ~vkÞ þ ~pk;
~qkþ1 � ~qk

h
� ~vk

� �� �( )
þ h
XN�1

k¼0

f M
L ð~qk; ~vk; tkÞd~qk þ

ffiffiffi
h
p XN�1

k¼0

KT
2Rnk � d~qk ¼ 0; ð40Þ
where for each k ¼ 0; . . . ;N � 1; nk is a n-dimensional vector with entries being independent standard normal random vari-
ables. The discrete reduced stochastic Euler–Lagrange equations that give the symplectic forward Euler iteration scheme is
then given by
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@LM

@~q
ð~qk; ~vkÞ �

1
h
ð~pk � ~pk�1Þ þ f M

L ð~qk; vk; tkÞ þ
1ffiffiffi
h
p KT

2Rnk ¼ 0

~qk � ~qk�1

h
¼ ~vk�1

@LM

@v ð
~qk; ~vkÞ ¼ ~pk; k ¼ 1; . . . ;N:
Different symplectic variational schemes (e.g., backward Euler or midpoint scheme) can be derived in the same way as in
Section 4 with an appropriate discretization for the Stratonovich integral. In [10], it is shown that the stochastic flow of a
stochastic mechanical system on T�Q preserves the canonical symplectic form almost surely (i.e., with probability one with
respect to the noise). Furthermore, an extension of Noether’s theorem says that in presence of symmetries of the Lagrangian,
the corresponding momentum map is preserved almost surely.
7. Examples

In the following section, we demonstrate the variational integration scheme by means of simple circuit examples. The
numerical results are compared with solutions resulting from standard modeling and simulation techniques from circuit
theory. In particular, we compare the variational integrator results based on Lagrangian models with solutions obtained with
a Runge–Kutta scheme of fourth order, as well with solutions obtained by applying Backward Differentiation Formula (BDF)
methods to models derived using the Modified Nodal Analysis (MNA). Since we are interested in the preservation properties
of the integrators for constant time stepping, we use a constant step size h for all methods to ensure a fair comparison. Note
that arbitrary step size control destroys the good long time behavior (see for example [33]) of symplectic integrators. Time
adaptive symplectic schemes can be constructed using for example Sundman and Poincaré transformations (see [36]). These
or similar methods have to be extended for the integration of electric circuits for a comparison with standard non symplectic
adaptive time stepping schemes.

For all examples, we use the convention that the charge vector q 2 Rn is ordered as q ¼ ðqL; qC ; qR; qV Þ, and correspondingly
the current, voltage, and linkage flux vectors, as well as the Kirchhoff Constraint and the Fundamental Loop matrix.
7.1. Short introduction to MNA

In most circuit simulators, the Modified Nodal Analysis (MNA) is used to assemble the system of equations. In the follow-
ing, we present the standard modified nodal analysis. We follow the description in [37]. A more detailed description can be
found, for example, in [37–39]. The MNA consists of three steps: 1. Apply the Kirchhoff Constraint Law to every node except
the ground. 2. Insert the representation for the branch current of resistors, capacitors, and current sources. 3. Add the rep-
resentation for inductors and voltage sources explicitly to the system.

The combination of Kirchhoff’s laws and the characteristic equations of the different elements yields the system of dif-
ferential and algebraic equations
KT
C

_qCðKCû; tÞ þ KT
RgðKRû; tÞ þ KT

L vL þ KT
VvV þ KT

I v IðKû; _qCðKCû; tÞ; vL;vV ; tÞ ¼ 0; ð41aÞ
_pLðvL; tÞ � KLû ¼ 0; ð41bÞ
uV ðKû; _qCðKCû; tÞ; vL;vV ; tÞ � KV û ¼ 0; ð41cÞ
with node voltages û, branch currents through voltage and flux controlled elements vV and vL, voltage dependent charges
through capacitors qC , current dependent fluxes through inductors pL, voltage dependent conductance g, and controlled cur-
rent and voltage sources v I and uV . System (41) can be rewritten in compact form as
A½dðxðtÞ; tÞ�0 þ bðxðtÞ; tÞ ¼ 0; ð42Þ
with
x ¼
û

vL

vV

264
375; A ¼

KT
C 0

0 I
0 0

264
375; dðx; tÞ ¼

qCðKCû; tÞ
pLðvL; tÞ

� 	
and the obvious definition of b. The prime ½dðx; tÞ�0 ¼ d
dt ½dðxðtÞ; tÞ� denotes differentiation with respect to time. Since the ma-

trix A @dðx;tÞ
@x might be singular, Eq. (42) is not an ordinary differential equation but of differential algebraic type. For a detailed

description of the properties of these equations, we refer for example to [32].
The standard approach to numerically solving the system of Eqs. (42) is to apply implicit multistep methods for the time

discretization, in particular lower-order BDF schemes or the trapezoidal rule. For a detailed description of these methods, we
refer for example to [37,40]. The advantage of BDF methods is the low computational cost compared to implicit Runge–Kutta
methods. However, they may have bad stability properties (cf. [37]) and, in particular, they are not symplectic.
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Fig. 2. Graph representation of a RLC circuit.
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7.2. RLC circuit

Consider the graph consisting of four boundary edges and two diagonal edges of a square (see Fig. 2). On each edge of this
graph, we have a pair of capacitor (with capacitance Ci ¼ 1; i ¼ 1; . . . ;6) and inductor (with inductance Li ¼ 1; i ¼ 1; . . . ;5)
except on one edge.3 On this edge, there is only one capacitor which leaves a degenerate Lagrangian. The corresponding planar
graph consists of n ¼ 6 branches and mþ 1 ¼ 4 nodes, thus we have l ¼ 3 meshes.

The matrix Kirchhoff Constraint matrix K 2 Rn;m and the Fundamental Loop matrix K2 2 Rn;n�m are (with the fourth node
assumed to be grounded)
3 The
of diffe

4 Not
K ¼

1 �1 0
0 �1 1
0 0 1
�1 0 0
0 �1 0
1 0 �1

0BBBBBBBB@

1CCCCCCCCA
; K2 ¼

1 0 �1
0 �1 1
0 1 0
1 0 0
�1 1 0
0 0 1

0BBBBBBBB@

1CCCCCCCCA
: ð43Þ
The matrix KT
2LK2 is non-singular with L ¼ diagðL1; . . . ; L5;0Þ; thus, the degeneracy of the system is eliminated by the con-

straints on the system, and all three variational integrators derived in Section 4, can be applied.
In Fig. 3(a), the oscillating behavior of the current on the first branch is shown (the currents on the other branches behave

in a similar way). For the energy behavior of the LC circuit, we compare the exact solution with solutions obtained with the
three different variational integrators, a Runge–Kutta method of fourth order, and a BDF method of second order. Since no
resistor or voltage source is involved, this energy should be preserved. For the variational integrator based on the midpoint
rule (VI), the energy is exactly preserved since the electric potential is only quadratic. For this relatively short integration
time span, we observe that also the solution with the Runge–Kutta scheme (RK4) preserves the energy (the red solid, red
dashed, and black dashed lines in Fig. 3(b) lie on top of each other). By using the forward (VI EFD, blue dotted) or backward
Euler (VI EBD, blue dashed dotted) variational integrator, the energy oscillates around its real value, however, no dissipation
or artificial growth of the energy occurs in contrast to the solution obtained by a BDF method (MNA BDF): Here, the energy
rapidly decreases using a second order BDF method (see the magenta dashed dotted line in Fig. 3(b)). These results are based
on a step size of h ¼ 0:1. If the step size is increased to h ¼ 0:4, a phase shifting of the currents that are computed with var-
iational integrators is observed (which is a typical behavior observed for variational integrators) in contrast to solutions ob-
tained by the Runge–Kutta scheme (see Fig. 4(a)).4 However, considering the energy behavior shown in Fig. 4(b), energy is
dissipating for the Runge–Kutta solution, whereas for the variational integrators it (its median, respectively) is preserved.
The performance of the BDF method is even worse: The energy is dissipating very fast. This can also be observed considering
the current in Fig. 4(a). The amplitude of the current oscillations is damped to almost zero after a certain integration time.
Rather than increasing the step size, we use a small step size h ¼ 0:05 and do a long-time integration. In Fig. 5, we see that
the variational integrators still qualitatively preserve the energy, while the Runge–Kutta scheme slowly dissipates energy.
values for inductance and capacitance are just chosen for demonstration purpose of the variational integrator. For real circuits, the values are typically
rent order, which results in a dynamical behavior on a different scale as in our numerical examples.
e that the Runge–Kutta method is of higher order (fourth order) than the variational integrators, and thus solution curves are of higher accuracy.
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Fig. 4. LC circuit (no resistors) with step size h ¼ 0:4. Comparison of the exact solution (exact) and the numerical solution using the three different
variational integrators, midpoint rule (VI), backward Euler (VI EBD), and forward Euler (VI EFD), a Runge–Kutta method of fourth order (RK4), and a BDF
method of second order based on MNA (MNA BDF). (a) The use of variational integrators (VI, VI EBD, VI EFD) leads to a phase shifting in the numerical
solution of the current. With the BDF method, the oscillations are damped out. (b) The energy is (qualitatively) preserved for VI, VI EBD, and VI EFD. The
lines of exact and VI lie on top of each other at energy level 1.5. The use of RK4 and BDF leads to an artificial energy decay.
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Fig. 3. LC circuit (no resistors) with step size h ¼ 0:1. (a) The oscillating behavior of the current on the first branch is shown. (b) Comparison of the exact
energy behavior (exact) and the numerical solution using the three different variational integrators, midpoint rule (VI), backward Euler (VI EBD), and
forward Euler (VI EFD), a Runge–Kutta method of fourth order (RK), and a BDF method of second order based on MNA (MNA BDF). The energy is
(qualitatively) preserved for VI, VI EBD, VI EFD, and RK. The lines of exact, VI, and RK lie on top of each other at energy level 1.5. The use of BDF leads to an
artificial energy decay.
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We investigate the preservation properties even more by comparing the amplitude of the oscillating branch current and
the corresponding spectrum in frequency domain for the different integration methods. The solution of the first branch cur-
rent oscillates with two frequencies, x1 ¼ 1 and x2 ¼

ffiffiffi
2
p

. In Fig. 6, the branch current and the frequency spectrum for the
discrete solution computed with two different step sizes (h ¼ 0:1;0:4) and different integrators are compared. For a bigger
step size h, the amplitude of the oscillations and the spectrum of the higher frequency are artificially damped for the Runge–
Kutta and the BDF method. However, using a variational integrator, the frequency is slightly shifted, but the spectrum is
much better preserved. For h ¼ 0:4, we compute the frequency spectrum for three different time intervals, 0; T

3

� �
; T

3 ;
2T
3

� �
,

and 2T
3 ; T
� �

. Corresponding to our analytical result regarding frequency preservation (see Section 5.2), we see in Fig. 7 that
the frequency spectrum is the same independent on the integration time if a variational integrator is used. However, using
the Runge–Kutta or BDF method it is damped if a time interval after a longer integration time is chosen.

In each branch of the circuit, we now add a small resistor with resistance Ri ¼ 0:001; i ¼ 1; . . . ;6. Again, we compare the
oscillating behavior and the energy behavior of the numerical solution obtained by different integrators. Due to the resistors,
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Fig. 5. LC circuit (no resistors) with step size h = 0.05. Comparison of the exact solution (exact) and the numerical solution using the three different
variational integrators, midpoint rule (VI), backward Euler (VI EBD), and forward Euler (VI EFD), a Runge-Kutta method of fourth order (RK4). The long-time
energy is (qualitatively) preserved for VI, VI EBD, and VI EFD. The lines of exact and VI lie on top of each other at energy value 1.5. The use of RK4 leads to an
artificial energy decay.
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Fig. 6. Current of first branch of LC circuit (left) and corresponding frequency spectrum (right). Comparison of the exact solution (exact) and the numerical
solution using the three different variational integrators, midpoint rule (VI), backward Euler (VI EBD), and forward Euler (VI EFD), a Runge-Kutta method of
fourth order (RK4), and a BDF method of second order based on MNA (MNA BDF). For increasing step size h, the damping of the amplitude of the oscillations
and of the higher frequency spectrum increases using RK4 and BDF. For VI, VI EBD, and VI EFD, the frequency is slightly shifted, but the spectrum and the
current amplitude is much better preserved.
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Fig. 7. Frequency spectrum of first branch current of LC circuit (no resistors) h = 0.4 computed on time interval [0,T/3], [T/3,2T/3], [2T/3,T]. Comparison of
the exact solution (exact) and the numerical solution using the three different variational integrators, midpoint rule (VI), backward Euler (VI EBD), and
forward Euler (VI EFD), a Runge-Kutta method of fourth order (RK4), and a BDF method of second order based on MNA (MNA BDF). Using RK4 and BDF the
spectrum is damped for higher integration times and preserved using a variational integrator.

(a) (b)
0 50 100 150 200 250 300 350 400

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time

en
er

gy

 

 
exact
VI
VI EBD
VI EFD
RK4
MNA BDF

Fig. 8. LCR circuit (with resistors) with step size h = 0.4. Comparison of the exact solution (exact) and the numerical solution using the three different
variational integrators, midpoint rule (VI), backward Euler (VI EBD), and forward Euler (VI EFD), a Runge-Kutta method of fourth order (RK4), and a BDF
method of second order based on MNA (MNA BDF). a) The use of variational integrators (VI, VI EBD, VI EFD) leads to a phase shifting in the numerical
solution of the current. With the BDF method, the oscillations are artificially damped out. b) The energy decay is much better preserved for VI, VI EBD, and VI
EFD as for RK4 and BDF.
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the energy in the system decays. The rate of energy decay is shown for the exact solution in Fig. 8(b). The variational inte-
grator solution respects this energy decay much better than the Runge–Kutta and BDF scheme.

7.3. Oscillating LC circuit

As second example, we consider the LC circuit given in Fig. 9. It consists of two inductors with inductance L1 ¼ 1 and L2 ¼ 1
and two capacitors with capacitance C1 ¼ 1 and C2 ¼ 10 and thus has n ¼ 4 branches and mþ 1 ¼ 3 nodes. The Kirchhoff Con-
straint matrix K 2 Rn;m and the Fundamental Loop matrix K2 2 Rn;n�m are (with the third node assumed to be grounded)
K ¼

1 0
0 �1
0 �1
�1 1

0BBB@
1CCCA; K2 ¼

1 0
0 1
1 �1
1 0

0BBB@
1CCCA: ð44Þ
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Fig. 9. Oscillating LC circuit.
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Fig. 10. LC circuit. (a) Current on inductor 1. (b) Current on inductor 2. (c) Charge on capacitor 1. (d) Charge on capacitor 2.
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With nC ¼ 2 and KC ¼
0 �1
�1 1

� �
having full rank, we can follow from Proposition 1 that the reduced Lagrangian system is

non-degenerate, that is all three variational integrators derived in Section 4 can be applied.
In Fig. 10, the oscillating behavior of the branch currents on the inductors (a)–(b) and of the branch charges on the capac-

itors (c)–(d) is depicted. For a long-time simulation, we compare the exact energy behavior of the LC circuit with the energy
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Fig. 11. Energy of oscillating LC circuit: Solutions obtained with the midpoint variational integrator exactly preserve the energy (VI) independent on the
step size h. The energy computed with the forward (VI EFD) and backward (VI EBD) Euler variational integrators oscillates around the real energy value
without dissipation or artificial growth. For solutions obtained with a second order BDF method (BDF MNA), the energy dissipates due to numerical errors.
The solution of the Runge–Kutta scheme (RK4) dissipate energy, but seems to converge to lower constant energy value.
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behavior of the solution obtained with the three different variational integrators (VI, VI EBD, VI EFD), a Runge–Kutta method
of fourth order (RK4), and a BDF method of second order based on MNA (BDF MNA). As for the previous example, indepen-
dent on the step size h, the energy is exactly preserved using VI based on midpoint rule, whereas the solutions using the
Euler VI oscillate around the real energy value without dissipation or artificial growth of the energy (see Fig. 11). Using
the BDF method, the energy rapidly decreases for increasing time step h. The solution of the Runge–Kutta scheme shows
a similar decreasing energy behavior for the step size h ¼ 0:1;0:2;0:4. However, for a step size of h ¼ 0:6, the energy seems
to converge to a constant value that is not the exact energy value, but slightly lower. This might be due to the fact that the
amplitude of the first lower frequency is almost preserved and only the amplitude corresponding to the higher frequency is
damped out for increasing integration time, as shown in Fig. 12 for different time spans and a step size of h ¼ 0:6. The same
property is reflected by the plots in the frequency domain in Fig. 13 for h ¼ 0:4, where for increasing integration time the
spectrum of the high frequency (x2 	 1:43) is damped for the Runge–Kutta and BDF method and preserved using a symplec-
tic method. This phenomenon is also confirmed by the frequency spectrum plot in Fig. 14 for different step sizes. As for the
previous example, the spectrum that corresponds to the higher frequency is damped out for higher step sizes h for the BDF
and the Runge–Kutta method.

7.4. LC transmission line

To demonstrate the momentum map preservation properties of the variational integrator, we consider the LC transmis-
sion line that consists of a chain of inductors and capacitors as illustrated in Fig. 15. The matrix Kirchhoff Constraint matrix
K 2 Rn;m and the Fundamental Loop matrix K2 2 Rn;n�m are (with the third node assumed to be grounded),



Fig. 12. Charge on capacitor 1 of LC circuit (h ¼ 0:6). Comparison of the exact solution (exact) and the numerical solution using the three different
variational integrators, midpoint rule (VI), backward Euler (VI EBD), and forward Euler (VI EFD), a Runge–Kutta method of fourth order (RK4), and a BDF
method of second order based on MNA (MNA BDF). For the variational integrators the amplitudes for low and high frequencies are preserved. Using the
Runge–Kutta method, the amplitude corresponding to the high frequency is damped out for increasing integration time whereas the amplitude of the lower
one seems to be preserved. Using the BDF method, the amplitudes of both frequencies are damped.
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K ¼

�1 0
1 �1
0 1
1 0
0 1

0BBBBBB@

1CCCCCCA; K2 ¼

1 0 0
0 1 0
0 0 1
1 �1 0
0 1 �1

0BBBBBB@

1CCCCCCA:
With nC ¼ 2 and KC ¼
1 0
0 1

� �
having full rank, we can follow from Proposition 1 that the reduced Lagrangian system is non-

degenerate. For this circuit, the topology Assumption 1 is satisfied, that is all nodes except ground have exactly one branch
connected and inward and outward to the node. Thus, from Theorem 2 we have that the sum of the inductor fluxes
pL1
þ pL2

þ pL3
is a conserved quantity. This can be also seen from the variational simulation results depicted in Fig. 16.

7.5. Validation on the stochastic variational integrator

Consider the stochastic differential equation
dx ¼ Axdt þ �RdWt ; ð45Þ
where �R is a n-by-m matrix, not necessarily full rank, x ¼ ðx1; x2; . . . ; xnÞ 2 Rn;A 2 Rn;n and Wt is an m-dimensional Brownian
motion (with independent components). A common way to verify the quality of a numerical solution is to consider statistical
moments of the solution; in particular, we focus on the expectation and the variance, that is EðxðtÞÞ and
DðxðtÞÞ ¼ EðxðtÞÞ2 � ðEðxðtÞÞÞ2.
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Fig. 13. Frequency spectrum of charge on capacitor 1 of LC circuit (h ¼ 0:4) computed on time interval ½0; T=3�; ½T=3;2T=3�; ½2T=3; T�. Comparison of the exact
solution (exact) and the numerical solution using the three different variational integrators, midpoint rule (VI), backward Euler (VI EBD), and forward Euler
(VI EFD), a Runge–Kutta method of fourth order (RK4), and a BDF method of second order based on MNA (MNA BDF). Using RK4 and BDF the spectrum is
damped for higher integration times and preserved using a variational integrator.
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On the analytical side, by Ito’s formula (see for example [41]) we have with BðtÞ ¼ expðAtÞ
EðxðtÞÞ ¼ BðtÞxð0Þ; ð46aÞ

DðxðtÞÞ ¼
Z t

0
BðsÞ�R�RT BðsÞT ds: ð46bÞ
The expectation and the variance can always be computed if A and �R are given. For big systems, however, such a mundane
computation is quite complex. On the numerical side, we run an ensemble of simulations (of total number M), all starting
from the same initial condition but for each simulation an independent set of noise (i.e., different nk) is used. The ensemble
are indicated by x1ðtÞ; x2ðtÞ; . . . ; xMðtÞ where for any j; xjðtÞ ¼ ðxj

1ðtÞ; x
j
2ðtÞ; . . . ; xj

nðtÞÞ is a vector. We compute the empirical mo-
ments by
�EðxðtÞÞ 	 1
M

XM

j¼1

xjðtÞ; ð47aÞ

�DðxðtÞÞ 	 1
M

XM

j¼1

ðxjðtÞÞ2 � 1
M2

XM

j¼1

xjðtÞ
 !2

: ð47bÞ
The numerical method is validated if for large enough M the empirical moments (47) are close to the analytical ones (46).
In our setting, we can rewrite the reduced stochastic Euler–Lagrange Eqs. (39) in the form of (45) with

x ¼ ð~q; ~pÞ 2 R2ðn�mÞ; �R ¼ 0 0
0 KT

2R

� �
2 R2ðn�mÞ;2n, and the obvious definition of A 2 R2ðn�mÞ;2ðn�mÞ with R 2 Rn;n and

K2 2 Rn;n�m. The analytical variance matrix Dðð~qðtÞ; ~pðtÞÞ 2 R2ðn�mÞ;2ðn�mÞ for the reduced system can now be calculated using
Eq. (46b). The corresponding variance matrix for the full system can then be calculated as
DðqðtÞ; pðtÞÞ ¼
K2 0
0 K2

� �
Dð~qðtÞ; ~pðtÞÞ

KT
2 0

0 KT
2

 !
2 R2n;2n:
As a demonstration, we calculate the empirical and analytical moments for the circuit introduced in Section 7.3. For the
experiments throughout this section, we defined R as 4-by-4 diagonal matrix with diagonal entries Rjj ¼ 0:01; j ¼ 1; . . . 4.
The step size is h ¼ 0:1, the integration time for each simulation is T ¼ 30, and we start with the initial conditions
~q0 ¼ ð1;0Þ; ~v0 ¼ ð0;0Þ, and ~p0 ¼ ð0;0Þ. The empirical averages are calculated over an ensemble of M ¼ 100000 independent
simulations.

The analytical variance of pL1
and pL2

, that is the fifth and sixth diagonal elements of the variance matrix in the full system,
are plotted as functions of time (see Fig. 17, red dotted line). Notice that pL1

and pL2
in our case are just the currents through

inductor branch 1 and 2, the inductances are L1 ¼ L2 ¼ 1. The result using the stochastic variational integrator is also shown
in Fig. 17 (blue solid line). Both function shapes and ranges agree very well. In particular, all the little bumps in the variance
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Fig. 15. LC transmission line.
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Fig. 14. Frequency spectrum of charge on capacitor 1 of LC circuit. Comparison of the exact solution (exact) and the numerical solution using the three
different variational integrators, midpoint rule (VI), backward Euler (VI EBD), and forward Euler (VI EFD), a Runge–Kutta method of fourth order (RK4), and a
BDF method of second order based on MNA (MNA BDF). For increasing step size h, the damping of the higher frequency spectrum increases using RK4 and
BDF. For VI, VI EBD, and VI EFD, the frequency is slightly shifted, but the spectrum is much better preserved.
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that are subtly different are approximated correctly. This classical test serves as an evidence that the stochastic integration
works fine.
7.6. Multiscale integration with FLAVORS

When the circuit exhibits behavior in two time scales, our integrators can be FLAVORized [11] to capture the slow time
scale without resolving the fast time scale to greatly reduce integration time. We first give a brief description of FLAVORS
(FLow AVeraging integratORS). More details can be found in [11]. We also refer to Section 7.6.1 for a mini-discussion on
why we chose FLAVORS in this application.

Consider an ordinary differential system on Rd



Fig. 16. LC transmission line. The sum of the fluxes through all three inductors (blue solid, blue dotted, and blue dashed dotted) is preserved (black line).
(For interpretation of reference to colour in this figure legend, the reader is referred to the web version of this article.)

(a) (b)
Fig. 17. Benchmark of variances as functions of time according to (46b) (red dotted) and variances as functions of time computed numerically by averaging
over an ensemble according to (47b) (blue solid). (a) Dp1 (b) Dp2. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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_u� ¼ Gðu�Þ þ 1
�

Fðu�Þ; ð48Þ
with �� 1. In the context of Lagrangian systems, we consider a multiscale Lagrangian as
Lðq;vÞ ¼ 1
2

vT Lv � VðqÞ � 1
�

UðqÞ ð49Þ
where VðqÞ is denoted as ‘‘slow’’ and 1
�UðqÞ denoted as ‘‘fast’’ potential. In the case of a linear circuit, the slow potential cor-

responds to the charge potential of a capacitor with high capacitance, whereas the fast potential corresponds to a capacitor
with very small capacitance. For instance, consider the oscillating LC circuit in Section 7.3 with C1 ¼ 1 and C2 ¼ � (� ¼ 1 in
Section 7.3). The corresponding potential in (49) can be written as the sum of slow and fast potential as



(a)

(b)
Fig. 18. Simulations of a multiscale system: (a) Benchmark solution computed with a variational integrator (h ¼ 10�4) (b) FLAVOR with s ¼ 10�4; d ¼ 10�3

and � ¼ 10�3.
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VðqÞ ¼ 1
2

q2
C1
; UðqÞ ¼ 1

2
q2

C2
:

The smaller � (i.e., C2) is, the wider the two time scales will be separated.
FLAVORS are based on the averaging of the instantaneous flow of the differential Eq. (48) with hidden slow and fast vari-

ables. The way to FLAVORize any of our integrators for circuits is to break each timestep into a composition of two substeps.
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The first one uses a timestep of length s, and the second one uses a timestep d� s. s has to be small enough to resolve the
stiffness, but d� s does not. In fact, in the first substep one integrates the entire system with the original value of the stiff-
ness 1=�, whereas in the second substep one integrates the system with the stiffness turned off, that is 1=� is temporarily set
to 0. Of course, for the first substep of the next step, 1=� has to be restored to its original big value again. To be more precise,
FLAVOR is implemented using an arbitrary legacy integrator U

1
�
h for (48) in which the parameter 1

� can be controlled. By
switching on and off the stiff parameter, FLAVOR approximates the flow of (48) over a coarse time step H (resolving the slow
time scale) by the flow
Fig. 19.
and � ¼
UH :¼ U0
H
M�s

U

1
�
s

� �M
;

where s is a fine time step resolving the ‘‘fast’’ time scale (s� �) and M is a positive integer corresponding to the number of
‘‘samples’’ used to average the flow (d ¼ H=M). Since FLAVORS are obtained by flow composition, they inherit the structure-
preserving properties (for instance, symplecticity and symmetries under a group action) of the legacy integrator for Hamil-
tonian systems.

Theorem 1.4 in [11] guarantees the accuracy of FLAVORS for d� h0; s� � and s
�

� �2 � d� s
�, where h0 is the stability limit

of step length for the legacy integrator. Furthermore, if the hidden fast and slow variables are affine functions of the original
variables (such as in our case of linear circuit), the condition relaxes to d� h0; s� � and d� s

�. An intuitive interpretation of
that theorem is, the numerically integrated slow variable will converge strongly (as a function of time) to the solution of an
averaged effective equation, and the fast variable will converge weakly to its local ergodic measure.

We use FLAVORS to simulate the LC circuit with � ¼ 10�3; s ¼ 0:1� ¼ 10�4;H ¼ 0:1 and M ¼ 100. The charges and currents
as functions of time are plotted in Fig. 18. Notice that the slow components in the solution are captured strongly, but the fast
components may have altered wave shapes: for instance, Fig. 19 shows a zoomed-in investigation of the current through the
second branch, which is a superposition of a slow global oscillation and a fast local oscillation; the slow one is obviously
well-captured in the usual sense, and the fast one is captured in the less-commonly-used sense of averaging.
7.6.1. Mini-discussion on multiscale methods
Multiscale linear circuits fall in the category of highly oscillatory problems, where after dealing with the circuit con-

straints (which is nontrivial and one of the main contents of this paper) the problem can be approached by many methods,
a non-exhaustive list including integrators based on exponentials (e.g., [42–48]), highly oscillatory quadrature (see for in-
stance [49–53] and references therein), Hamilton–Jacobi approaches [54,55], filtering techniques [56–58], Poincaré map
techniques [59,60].

Multiscale nonlinear circuits, however, go beyond the scope of many methods described above. A note on two classes of
general multiscale methods, HMM (e.g., [61–64]) and the equation-free method (e.g., [65,66]), is that they may work for non-
linear circuits (again after constraints are handled with); nevertheless, so far there is no symplectic version of these ap-
proaches, and hence their applications in simulating circuits are limited, especially at the presence of voltage sources and
resistances. Because of this, in this paper, we instead make our circuit integrator multiscale via the approach of FLAVORs
[11], which are intrinsically symplectic and in fact variational. Moreover, our framework based on FLAVORs works for non-
linear circuits without any identification of slow or fast variables. Symplecticity in a multiscale simulation, which is a unique
(a) (b)
Simulations of a multiscale system: (a) Benchmark solution computed with a variational integrator (h ¼ 10�4) (b) FLAVOR with s ¼ 10�4; d ¼ 10�3

10�3.
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feature enabled by FLAVORs, allows us: (1) good long-time performance, (2) correct capture of the effects of voltage sources
and resistances, and (3) correct generalization to a stochastic setting.

More precisely, compared to the classical version of HMM [61] the main advantages of FLAVORs are as follows:

 They do not require the detection of slow variables (even with a non-linear relation between original variables and slow
variables [67,68]).
 Their implementation is very simple and non-intrusive: an existing/legacy integrator can be FLAVORized, that is it can be

turned into multi-scale integrator by adding five lines of code designed to turn on and off the stiff coefficients in that leg-
acy integrator.
 They preserve symmetries and inherit structures preserving properties (such as symplecticty) of the legacy integrator;

methods based on drift averaging do not have this property.

We note that a new version of HMM based on a Poincaré map type technique was recently proposed [64]. This new version
does not appear to be symplectic, but it does not require the identification of slow variables and it also allows for high order
accuracy compared to the basic version of FLAVOR [11]. Constructing higher order multi-scale integrators via flow averaging
requires employing higher order splitting methods than the one employed in the basic version of FLAVOR.
8. Conclusions

In this contribution, we presented a unified framework for the modeling and simulation of electric circuits. Starting with a
geometric setting, we formulate a unified variational formulation for the modeling of electric circuits. Analogous to the for-
mulation of mechanical systems, we define a degenerate Lagrangian on the space of branches that consists of electric and
magnetic energy, dissipative and external forces that describe the influence of resistors and voltage sources, as well as
(non-) holonomic constraints given by the KCL of the circuit. The Lagrange-d’Alembert-Pontryagin principle is used to derive,
in a variational way, the implicit Euler–Lagrange equations. These are differential–algebraic equations and describe the sys-
tem’s dynamics. A reduced version on the space of meshes is presented that is shown to be equivalent to the original system
and for which under some topology assumptions the degeneracy of the Lagrangian is canceled.

Based on the reduced version, a discrete variational approach is presented that provides different variational integrators
for the simulation of circuits. In particular, the generated integrators are symplectic, preserve momentum maps in presence
of symmetries and have good long-time energy bahvior. Furthermore, we observe that the spectrum of high frequencies is
especially better preserved compared to simulations using Runge–Kutta or BDF methods. Having the variational framework
for the model and the simulation, extensions of the approach by using already-existing types of different variational integra-
tors can be easily accomplished. As an example, we presented the extension for the simulation of noisy circuits by using sto-
chastic variational integrator approaches as well as multiscale methods (in particular FLAVORS) for an efficient treatment of
circuits with multiple time scales.

In the future, we will extend the approach to the simulation and analysis of more complicated nonlinear and magnetic
circuits that might include nonlinear inductors, capacitors, resistors, and transistors. Since a variational formulation in terms
of energies, forces, and constraints is still valid for the nonlinear case, the presented integrators will be derived and applied in
straight forward way. Furthermore, the inclusion of controlled sources allows for the consideration of optimal control prob-
lems for circuits for which techniques based on a variational formulation can be easily applied (see for example [5]). The
variational simulation of combined mechanical and electric (electro-mechanical) systems is the natural next step towards
the development of a unified variational modeling and simulation method for mechatronic systems. Furthermore, at nano-
scales, thermal noise and electromagnetic interactions become an essential component of the dynamic of electric circuits.
We plan to investigate the coupling of variational integrators for circuits with multi-symplectic variational integrators for
EM fields and continuum mechanics (see for example [69–71]) to produce a robust structure-preserving numerical integra-
tor for Microelectromechanical and Nanoelectromechanical systems. Recently, Mike Giles has developed a Multilevel Monte
Carlo method for differential equations with stochastic forcings [72] that shows huge computation accelerations, 100 times
in some cases. The extension of the current method to multilevel stochastic variational integrators is straight forward and
may further accelerate the computation dramatically, especially for multiscale problems, while preserving certain properties
of the circuit network.
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