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This article considers non-relativistic charged particle dynamics in both static and 
non-static electromagnetic fields, which are governed by nonseparable, possibly time-
dependent Hamiltonians. For the first time, explicit symplectic integrators of arbitrary 
high-orders are constructed for accurate and efficient simulations of such mechanical 
systems. Performances superior to the standard non-symplectic method of Runge–Kutta are 
demonstrated on two examples: the first is on the confined motion of a particle in a static 
toroidal magnetic field used in tokamak; the second is on how time-periodic perturbations 
to a magnetic field inject energy into a particle via parametric resonance at a specific 
frequency.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Simulations of the possibly chaotic dynamics of charged particles require high accuracies over long time intervals. The 
conservation of particle energy, which collision cross-section typically depends on, is also preferred (e.g., [13]). These consid-
erations naturally place symplectic integrators as popular candidates of choice1: based on their preservation of phase-space 
volume (see e.g., reviews in [22,14,8]), symplectic integrators nearly preserve the energy of an autonomous mechani-
cal system (by backward analysis; see e.g., [8]), correctly account for energy injections and removals in non-conservative 
mechanical systems (see e.g., [19]), conserve momentum maps (by a discrete Noether’s theorem; see e.g., [14]), and demon-
strate suitable for long time simulations (e.g., [20,8]) and chaotic systems (e.g., [16]). In addition, a need for accuracy in 
the trajectory calls for high-order symplectic integrators. At the same time, as one often estimates statistics by tracking 
a large ensemble of particles, computational efficiency is critical, and integrators that use explicitly defined updates are 
desired.

Although by now it is well known how to construct explicit high-order symplectic integrators for separable Hamilto-
nians (i.e. H(q, p) = K (p) + V (q); see e.g., [30,24,7,28,22,20,14,17,11,8]), a charged particle is governed by, unfortunately, 
a nonseparable Hamiltonian. Generic symplectic integrators with implicitly defined updates (e.g., [21]) still apply, but they 
are computationally much more expensive. Remarkably, an explicit 2nd-order symplectic integrator for static magnetic 
fields was obtained in [29] based on splitting method. While that pioneering work is generalizable to high-order meth-
ods, it doesn’t extend to time-dependent fields, and there are certain static fields to which it doesn’t apply either (see 
Comparison in section 2). Also worth mentioning is, explicit symplectic integrators for general nonseparable Hamiltoni-
ans were recently constructed [25], but those methods are only symplectic in an extended phase-space but not the (q, p)

space.

E-mail address: mtao@gatech.edu.
1 Note non-symplectic integrators including Runge–Kutta methods (e.g., [3,9]) and Boris’ method [2,1] have also been popular.
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As difficulties in constructing explicit high-order symplectic integrators for general charged particles are well recognized 
(see e.g., [10] for a review, and [27,31] for an instance of an unsuccessful but useful effort), alternative approaches that 
keep a fraction of the structure-preserving properties of symplectic integrators have been proposed. Particularly significant 
among them is Boris’ method [2] and the class of volume-preserving integrators [10], the latter recently constructed and 
shown to contain the former.

This article solves the aforementioned difficulties by proposing a family of integrators that are explicit, high-order, and 
fully symplectic. This family is based on a shadowing theorem and Runge–Kutta methods, and called ESSRK (Explicit Sym-
plectic Shadowed Runge–Kutta; suggested pronunciation: ’e-serk). Any even-order-of-accuracy version of ESSRK can be 
explicitly constructed, and it works for both static and time-dependent electromagnetic fields. The method is described 
in section 2, followed by performance tests on a static example in section 3 (a charged particle in tokamak) and a time-
dependent example in section 4 (magnetic parametric excitation). In these examples, ESSRK demonstrates superior long-time 
performances: it makes little amplitude errors, and even its phase errors, which are much more significant, are still smaller 
than errors of a standard non-symplectic method (Runge–Kutta) with the same order of accuracy.

2. Method and properties

A non-relativistic charged particle in a possibly time-dependent electromagnetic field corresponds to the Hamiltonian

H(q,p, t) = 1

2m
‖p − eA(q, t)‖2

2 + eφ(q, t), (1)

where q = [q1, q2, q3] = [x, y, z] is the particle’s position and p = [p1, p2, p3] is its momentum, A is the magnetic vector 
potential (B = ∇ × A) and φ is the electric scalar potential (E = ∇φ), and m and e are particle mass and charge. The particle 
dynamics is governed by Hamilton’s equation q̇ = ∂ H/∂p, ṗ = −∂ H/∂q.

The flow maps To simulate such a system, we adopt a Hamiltonian splitting approach and write H = H1 + H2, where 
H1 = ‖p‖2

2/(2m) and H2 = −e〈p, A(q, t)〉/m + e2‖A(q, t)‖2
2/(2m) + eφ(q, t). Let h be the integration timestep, and ψ1(h) be 

the h-time flow map of H1, which is given by

ψ1(h) : [q,p] �→ [Q,P] := [q + hp/m,p].
The time t to t + h flow map of H2, indicated by ψ̄2(t + h, t), is not analytically available, but a good approximation ψ2(t +
h, t) can be obtained by using Runge–Kutta approximation for position and then a symplectically shadowed momentum 
update. More precisely, let f (q, t) = e2‖A(q, t)‖2

2/(2m) + eφ(q, t), and then H2 generates the dynamics{
q̇ = −(e/m)A(q, t)

ṗ = (e/m)pA′(q, t) − ∇ f (q, t)
, (2)

where q, p and A are viewed as row vectors, ∇ f is a row vector containing three spatial derivatives, and [A′]i j := ∂ Ai/∂q j
(the same conventions will be used throughout this paper for such differential operators). The fact that q dynamics shadow 
p’s is utilized by letting

ki(q) = −(e/m)A

⎛
⎝q + h

i−1∑
j=1

aijk j(q), t + h
i−1∑
j=1

aij

⎞
⎠

k′
i(q) = −(e/m)A′

⎛
⎝q + h

i−1∑
j=1

aijk j(q), t + h
i−1∑
j=1

aij

⎞
⎠

⎛
⎝I + h

i−1∑
j=1

aijk
′
j(q)

⎞
⎠

∇li(q) = ∇ f

⎛
⎝q + h

i−1∑
j=1

aijk j(q), t + h
i−1∑
j=1

aij

⎞
⎠

⎛
⎝I + h

i−1∑
j=1

aijk
′
j(q)

⎞
⎠

be explicitly computed for i = 1, · · · , s, where dependence on t and h are implicitly assumed for notational brevity. Then 
ψ2(t + h, t) : [q, p] �→ [Q, P] defined by

Q = q + h
s∑

i=1

biki(q)

P =
(

p − h
s∑

i=1

bi∇li(q)

)(
I + h

s∑
i=1

bik
′
i(q)

)−1

(3)
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is (i) a symplectic map for any t and h, and (ii) an O(hp+1) approximation of ψ̄2(t + h, t) as long as s, aij and bi are 
parameters of a generic p-th order Runge–Kutta method (such parameters values exist for arbitrary positive integer p; e.g., 
[3,9]).

To prove these properties, let li(q) = f
(

q + h
∑i−1

j=1 aijk j(q), t + h
∑i−1

j=1 aij

)
, g(q) = q + h 

∑s
i=1 biki(q), and c(q) =

h 
∑s

i=1 bili(q), and then (3) can be verified to be Q = g(q), P = (p − ∇c(q)) 
(
g′(q)

)−1
.

(i) For any fixed t and h, consider a generating function of 2nd kind S(P, q) = 〈P, g(q)〉 + c(q). ψ2 is symplectic because 
it corresponds to a canonical transformation Q = ∂ S/∂P, p = ∂ S/∂q.

(ii) Two observations help quantify the accuracy of ψ2. First, p is shadowed by q dynamics in (2), in the sense that if 
q(t) is exactly available then p(t) can be explicitly obtained (note this is nontrivial: even though p satisfies a linear equation 
given q, the linear coefficient −(e/m)A′(q, t) is a time-dependent matrix, which makes a closed-form solution not obvious). 
Second, note q is approximated by a standard Runge–Kutta method, which introduces an O(hp+1) error, and p, obtained via 
shadowing, will have an error at the same order. These observations are made precise in the appendix.

The integrator based on flow composition It is known that the flow of a time independent Hamiltonian H = H1 + H2 can be 
approximated to arbitrary high order by a careful alternating composition of flows of H1 and H2 (e.g., [24,30,17,8]; note its 
2nd-order version corresponds to the well-known Strang splitting [23]). This powerful tool extends to the time-dependent 
system (1) (provable upon the introduction of a dummy time variable). Specifically, let �(t + h, t) be the flow map of H , 
and then it has a 2nd-order approximation given by �(t + h, t) = �2(t + h, t) +O(h3), where

�2(t + h, t) := ψ1 (t + h, t + h/2) ◦ ψ̄2(t + h, t) ◦ ψ1 (t + h/2, t) . (4)

Furthermore, a (p + 2)th-order approximation can be constructed from pth-order via

�p+2(t + h, t) = �p
(
t + h, t + (1 − γp)h

) ◦ �p
(
t + (1 − γp)h, t + γph

) ◦ �p
(
t + γph, t

)
, (5)

where γp = 1/(2 − 21/(p+1)). Hence, given an arbitrary even p, �p(t +h, t) that satisfies �(t +h, t) = �p(t +h, t) +O(hp+1)

can be iteratively constructed.
The problem is ψ̄2 is unavailable. However, ψ2, obtained by shadowed Runge–Kutta (3), is a p-th order approximation 

of ψ̄2 (see the appendix for proof). Replacing ψ̄2 by ψ2 in �p leads to an additional error, but the total error remains 
O(hp+1). This way, high-order integrators for (1) are constructed, and they are symplectic because both ψ1 and ψ2 are 
symplectic and hence so are their compositions.

The resulting integrators are called ESSRK. A recommended 4th-order ESSRK updates from [qn, pn] at time tn to 
[qn+1, pn+1] at time tn+1 = tn + h, based on⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qn,1 = qn + (γ h/2)pn/m

[qn,2,pn,2] = ψ2(tn + γ h, tn)[qn,1,pn]
qn,3 = qn,2 + (h/2 − γ h/2)pn,2/m

[qn,4,pn,4] = ψ2(tn + (1 − γ )h, tn + γ h)[qn,3,pn,2]
qn,5 = qn,4 + (h/2 − γ h/2)pn,4/m

[qn,6,pn+1] = ψ2(tn + h, tn + (1 − γ )h)[qn,5,pn,4]
qn+1 = qn,6 + (γ h/2)pn+1/m

, (6)

where γ = 1/(2 − 21/3), and ψ2 uses s = 4; b1 = 1
6 , b2 = 2

6 , b3 = 2
6 , b4 = 1

6 ; a21 = 1
2 , a32 = 1

2 , a43 = 1 and other aij ’s are 0. 
Note adjacent ψ1’s in the composition (5) have been absorbed into a single substep since ψ1 forms a semigroup, and 
therefore �4 consists of four ψ1 substeps and three ψ2 updates, each of which involves four stages.

In general, ESSRK of arbitrary order p can be viewed as an alternating composition

ψ1(slp+1, slp ) ◦ ψ2(τlp , τlp−1) ◦ ψ1(slp , slp−1) ◦ · · · ◦ ψ1(s2, s1) ◦ ψ2(τ1, τ0) ◦ ψ1(s1, s0),

where s0 = τ0 = tn , slp+1 = τlp = tn+1, and other nodes can be computed using (5) for arbitrary p (with lp+2 = 3lp −2). Note 
when p is large it is possible to obtain alternative values of s and τ ’s with a smaller lp , and hence a reduced number of 
substeps; this is based on order conditions obtained from free Lie algebra theory (see e.g., [15,18,17]).

Comparison with an existing method There is one existing approach for explicit high-order symplectic integrations of charged 
particles dynamics (see [29,6]). Although remarkable ([5], Chapter 12.9), that approach only works for static electromagnetic 
fields, while ESSRK works for time-dependent fields as well.

In addition, there are static fields to which the existing method doesn’t apply. More specifically, the existing method 
is based on splitting and canonical transformation — the Hamiltonian H = ‖p − eA(q)‖2/(2m) + eφ(q) is decomposed 
as a sum of Hi = (pi − e Ai(q))2/(2m), i = 1, 2, 3 and H4 = eφ(q), and the flow of H is approximated by composing 
the flows ϕi(h) of Hi (i = 1, · · · , 4). ϕ1 can be obtained by introducing a canonical transformation Q = q, P = p − ∂ S1 ,
∂q
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where

S1(q) = e

q1∫
A1(q̂1,q2,q3)dq̂1. (7)

Under this transformation, H1 becomes H1(Q, P) = P 2
1/2m, and its flow corresponds to a simple shift in Q 1. ϕ2 and ϕ3

can be analogously obtained, and ϕ4 is simply a momentum shift. However, the integral in (7) is not always obtainable in 
closed-form — a simple counterexample is A1(q1, q2, q3) = exp(−q2

1)q2, in which case ∂q2 S1 cannot be computed in closed-
form and hence the existing method doesn’t apply. ESSRK doesn’t have this problem because it requires only the governing 
equation (∇φ, A′ and A).

A third difference is computational, in that medium-order ESSRK integrators involve less substeps. For instance, the 
existing method stated in [29] is 2nd-order, obtained via the composition ϕ1(h/2) ◦ ϕ2(h/2) ◦ ϕ3(h/2) ◦ ϕ4(h) ◦ ϕ3(h/2) ◦
ϕ2(h/2) ◦ ϕ1(h/2). It involves 7 substeps. A 4th-order generalization can also be obtained using (5), and it will involve 19 
substeps. In comparison, a 2nd-order ESSRK involves 4 substeps (1 + 2 + 1, the middle 2 corresponds to the two stages in a 
RK2 update), and the 4th-order ESSRK (6) involves 1 + 4 + 1 + 4 + 1 + 4 + 1 = 16 substeps.

Generalization ESSRK straightforwardly extends to N charged particles with an interacting potential that only depends on 
particle positions, i.e.

H(q1,p1, · · · ,qN ,pN , t) =
N∑

j=1

(
1

2m j
‖p j − e jA j(q j, t)‖2 + e jφ j(q j, t)

)
+ V (q1, · · · ,qN , t).

The computational cost scales with N without overhead (except for the unavoidable evaluation of ∇V ). This is because 
φ j(q j, t)’s and V (q1, · · · , qN , t) can be absorbed into a single function φ(q), whose contribution is accounted for by a single 
ψ2 substep, and the matrix to be inverted in (3) is block-diagonal.

3. Example 1: a particle confined by a toroidal field

Consider a charged particle in a toroidal magnetic field used in tokamak. We follow the model in [4], which uses the 
static magnetic field

B(r, θ,φ) = B0 R

R + r cos(θ)

(
êφ + r

Q R
êθ

)
,

where r, θ, φ are toroidal coordinates, R , B0, and Q are constants (note the safety factor is denoted by Q instead of q
used in [4] to avoid confusion with the position variable). The corresponding vector potential in Cartesian coordinates under 
Coulomb gauge can be computed as

A(x, y, z) = B0

[
− (

√
x2+y2−R)2+z2

2Q (x2+y2)
y,

(
√

x2+y2−R)2+z2

2Q (x2+y2)
x, −R log

(√
x2+y2

R

)]
.

To demonstrate the applicability of ESSRK, we also add an electric field with scalar potential φ(x, y, z) = −E0 cos(z).
Fig. 1 compares the simulation by the 4th-order ESSRK (6) with the standard 4th-order Runge–Kutta. Although both 

methods are 4th-order, standard RK loses accuracy in a long time simulation, and its lack of symplecticity results in numer-
ical dissipation. ESSRK as a symplectic method has much better long time performance, and this is observed even when the 
timestep is large. Note symplecticity doesn’t mean the elimination of numerical errors, and a scrutinized comparison be-
tween row 2 columns 2 and 3 shows that a large timestep still leads to phase errors; such errors are, of course, suppressed 
when ESSRK employs a small timestep (results not shown).

4. Example 2: a charged particle in parametric resonance

Consider a spatial-homogeneous magnetic field with a fixed direction and periodically perturbed amplitude, which is 
assumed without loss of generality to be B(t) = 1 + ε sin(ωt) (along with e = 1, m = 1). Choose x-y plane perpendicular to 
the magnetic field and Coulomb gauge so that A(q, t) = B(t)[q2, −q1, 0]/2. Consider q(0) = [0, 2.1, 0] and p(0) = [0, 0, 0].

In this simple example, amplitude and phase errors of a numerical simulation can be identified: analogous to guiding-
center reduction (e.g., [12]), the velocity v = p − A(q, t) is represented in polar coordinates v1 = v sin θ , v2 = v cos θ , and 
then v and θ respectively correspond to the slowly-varying amplitude and the fast-varying phase of the velocity oscilla-
tions.

In addition, it can for instance be shown by temporal homogenization [26] that when ω = 1 the particle expe-
riences parametric resonance: let E(t) = H(q(t), p(t)), then E(t) ≈ eεt/2(E(0) + O(ε)) for the above initial condition. 
Note t has to be large for the time-dependent magnetic field to pump into the particle an observable amount of en-
ergy.
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Fig. 1. Simulations of a charged particle in tokamak. For simplicity in demonstration, adopt unitless convention and let charge e = 1 and mass m = 1. Use 
parameters B0 = 1, E0 = 10−2, R = 2, Q = 5 and initial condition q(0) = [0, 2.1, 0], p(0) = [0, 0, 0].

Fig. 2. Simulations of a charged particle in parametric resonance. h = 0.25, ε = 10−4, T = ε−1/2. Errors were obtained by comparing to a benchmark 
simulation by RK4 with h = 0.001.

The long-time performances of the 4th-order ESSRK (6) and the standard 4th-order Runge–Kutta are compared in terms 
of amplitude and phase errors in Fig. 2 columns 1 and 2. ESSRK produces much smaller amplitude error due to its structure 
preservation property. At the same time, phase error of ESSRK is more significant, but it is nevertheless still one order of 
magnitude smaller than that of RK. In addition, numerically obtained particle energies are compared in Fig. 2 column 3. 
Temporal homogenization shows that E(end) ≈ 0.7078, which agrees well with the ESSRK result. On the contrary, the non-
symplectic simulation by RK is inaccurate, because while the particle gains energy from the perturbation, a large proportion 
of the gain is drained as a dissipative numerical artifact.
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Appendix. Proof of the arbitrary order of accuracy

Theorem 1 (Shadowing). Consider (2). Denote the q component of its flow map given q(t0) = x by ḡ(t, t0, x) := q(t), and let 
c̄(t, t0, x) = ∫ t f (q(τ ), τ )dτ . Then
t0
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p(t) =
(

p(t0) − ∂ c̄

∂x
(t, t0,x)

)[
∂ ḡ

∂x
(t, t0,x)

]−1

. (8)

Proof. By the definition of ḡ, ∂ ḡ/∂t = −(e/m)A(ḡ, t), and thus

∂

∂t

(
∂ ḡ

∂x

)
= ∂

∂x

(
∂ ḡ

∂t

)
= − e

m
A′ ∂ ḡ

∂x
.

Then,

∂

∂t

(
p(t)

∂ ḡ

∂x
(t, t0,x) + ∂ c̄

∂x
(t, t0,x)

)

= e

m
pA′ ∂ ḡ

∂x
− ∇ f

∂ ḡ

∂x
− e

m
pA′ ∂ ḡ

∂x
+ ∂

∂x
f (ḡ(t, t0,x), t)

= e

m
pA′ ∂ ḡ

∂x
− ∇ f

∂ ḡ

∂x
− e

m
pA′ ∂ ḡ

∂x
+ ∇ f

∂ ḡ

∂x
= 0.

Therefore,

p(t)
∂ ḡ

∂x
(t, t0,x) + ∂ c̄

∂x
(t, t0,x) = p(t0)

∂ ḡ

∂x
(t0, t0,x) + ∂ c̄

∂x
(t0, t0,x).

Since ḡ(t0, t0, x) = x and c̄(t0, t0, x) = 0, this equality produces (8) after rearranging terms. �
Corollary 1 (ψ2 order of accuracy). Assume s is the number of stages and aij , bi are coefficients of a p-th order Runge–Kutta method, 
then the update (3) has O(hp+1) local truncation error.

Proof. By the definition of a p-th order Runge–Kutta method, g(q(t)) = q(t + h) + O(hp+1), and thus the position update 
has (p + 1)-order truncation error.

It can also be shown that c(q(t)) := h 
∑s

i=1 bili(q) = ∫ t+h
t f (q(τ ))dτ + O(hp+1) by considering an auxiliary system {

q̇ = −(e/m)A(q, t)

ż = f (q, t)
; one-step update of the same Runge–Kutta method applied to this augmented system leads to 

g(q(t)) = ḡ(t + h, t, q(t)) +O(hp+1) and

h
s∑

i=1

bili(q(t)) = z(t + h) − z(t) +O(hp+1) =
t+h∫
t

f (q(τ ), τ )dτ +O(hp+1),

which is the same as c(q(t)) = c̄(t + h, t, q(t)) + O(hp+1). Consequently, the momentum update (3), in which [q, p] =
[q(t), p(t)] and [Q, P] = [q(t + h), p(t + h)], satisfies

P = (p − ∇c(q))
(
g′(q)

)−1 =
(

p − ∂ c̄

∂q
(t + h, t,q)

)[
∂ ḡ

∂q
(t + h, t,q)

]−1

+O(hp+1),

where the last estimate uses regularities of c̄ and ḡ in q, which are ensured by Gronwall’s lemma. This shows that the 
momentum truncation error is also of order p + 1. �
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