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• Nongradient metastable transition may utilize periodic orbit instead of saddle.
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a b s t r a c t

Small noise can induce rare transitions between metastable states, which can be characterized by
Maximum Likelihood Paths (MLPs). Nongradient systems contrast gradient systems in that MLP does not
have to cross the separatrix at a saddle point, but instead possibly at a point on a hyperbolic periodic orbit.
A numerical approach for identifying such unstable periodic orbits is proposed based on Stringmethod. In
a special class of nongradient systems (‘orthogonal-type’), there are provably local MLPs that cross such
saddle point or hyperbolic periodic orbit, and the separatrix crossing location determines the associated
local maximum of transition rate. In general cases, however, the separatrix crossing may not determine a
unique local maximum of the rate, as we numerically observed a counter-example in a sheared 2D-space
Allen–Cahn SPDE. It is a reasonable conjecture that there are always local MLPs associated with each
attractor on the separatrix, such as saddle point or hyperbolic periodic orbit; our numerical experiments
did not disprove so.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and main results

Rare dynamical events induced by small noise can nevertheless
be important. Examples of reactive rare events include climate
changes, phase transitions, and switching of macromolecular con-
formations [1]. It is not ideal to study these events by integrating
the dynamics, because most of the computation will be wasted on
waiting for rare events to occur. Freidlin–Wentzell large deviation
theory [2] provides an assessment of likelihoods of rare events.
More precisely, consider an SDE

dX = f (X)dt +
√
ϵdW , (1)

where X ∈ Rd, ϵ is a small parameter, and W is a d-dimensional
Wiener process.1 Freidlin–Wentzell theory states, as ϵ → 0
and given boundary condition X(T1) = xa and X(T2) = xb, the

E-mail address:mtao@gatech.edu.
1 The assumption of additive noise is not essential and only for simplicity; see for

instance [3] for generalizations.

probability density of a solution X(·) is asymptotically proportional
to exp(−ST1,T2 [X]/ϵ), where the action functional is given by

ST1,T2 [X] :=

⎧⎨⎩
1
2

∫ T2

T1

Ẋ(s) − f (X(s))
2 ds, X ∈ C̄xb

xa (T1, T2)

∞, X ̸∈ C̄xb
xa (T1, T2),

(2)

where C̄xb
xa (T1, T2) is the space of absolutely continuous functions in

[T1, T2] that satisfy X(T1) = xa and X(T2) = xb.
In the ϵ → 0 limit, the transition probability is characterized

by the minimizer of the action. In addition, in many situations T1
and T2 are unknown, and in this case it is natural to perform an
additional outer minimization over all T1 < T2. If one does so,
the minimum is generally achieved when T2 − T1 → ∞ [3,4].
Therefore, from now on, we assume T1 = −∞, T2 = ∞ and seek
minimizers2 of S∞[·] with boundary conditions. Such minimizers
will be called maximum likelihood paths (MLPs) throughout this

2 In most parts of this article we will only seek local minimizers. The reason is
convexity is not guaranteed and global minimization might be too difficult.
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article (they are also called instantons in the physical literature).
Also, wewill bemainlyworkingwithmetastable transitions, i.e., xa
and xb are two stable fixed points in the noise-less system Ẋ =

f (X).
If the system is gradient, i.e., there is a scalar field V (·) such that

f = −∇V , it is known that an MLP between two local minima of V
coincides with a Minimum Energy Path (MEP), which is defined as
a trajectory along which −∇V is always parallel to the path. Many
computational methods have been developed to compute MEPs,
such as [5–13]. Among them is String method [12,13], which is
comparedwith others in [14], briefly summarized in Appendix A.1,
and will be modified in Section 4. In addition, it is known that
an MEP has to cross at least one saddle point of the potential
energy V , which corresponds to a saddle point on a separatrix
submanifold in the noise-less dynamical system (e.g., [2]). It was
further shown that the identification of this saddle point helps
improve MEP computations (e.g., [14]). A number of approaches
have been proposed to locate saddle points, including [9,15–18].

It should be no surprise that transitions in nongradient systems
can be more complicated. After all, gradient systems correspond
to nonequilibrium statistical mechanics that are reversible diffu-
sion processes (i.e., satisfying detailed balance), while nongradient
systems may correspond to irreversibility (e.g., see [2,19]). Since
many important systems are nongradient, including Langevin
models of mechanical systems in constant temperature environ-
ment (e.g., [20]), stochastic fluid models (e.g., [21]), or irreversible
coarse-grained systems (e.g., [22]), numerous efforts have been
made to understand metastable transitions in nongradient sys-
tems. These include [19,23–38], which will be discussed in the
context of this article after three paragraphs. One key issue with
general nongradient systems is, MEPs are no longer defined, be-
cause there is no energy landscape on which the system evolves,
and theremay be no pathwhose tangent alignswith f everywhere.
However, MLPs as minimizers of the action functional (2) can still
be investigated, and their identification is essential for character-
izing rare events in these systems. Several successful numerical
methods for computing MLPs have been proposed, and we refer
to [1,3,4,39,40] for examples. Among them is geometric Minimum
Action Method (gMAM) [1,3,39], which is briefly summarized in
Appendix A.2 and will be modified later in this article.

As a general nongradient theory is still incomplete, this article
makes a small step by showing the following: unlike in gradient
systems, MLP does not have to cross a saddle point in a nongra-
dient system, and in fact there may be no saddle point at all. The
second simplest limit set, namely periodic orbit, which is generally
excluded in gradient systems,may be present on the separatrix and
utilized by the metastable transition. More specifically, for a class
of nongradient systems dubbed ‘orthogonal-type’, the transition
rate is again characterized by a barrier height like in the gradient
case (this result was stated in [2]), and given a saddle point or
a hyperbolic periodic orbit that locally attracts on the separatrix,
there is a unique associated localminimumaction and an explicitly
definedpath that achieves this action. Interestingly, periodic-orbit-
crossing MLPs differ significantly from a saddle-crossing MLP, as
their arc-lengths are infinite and there are infinitely many of them,
even if there is only one periodic orbit. On the other hand, for a non-
orthogonal-type nongradient system, numerically obtained local
MLPs also crossed saddles or periodic orbits, but multiple local
MLPs with different action values were found to correspond to the
same separatrix crossing location.

Two numerical methods play critical roles in this study. One
of them identifies hyperbolic periodic orbits, based on a varia-
tion of String method [12,13]. The other numerically computes
MLPs by supplementing the geometric Minimum Action Method
(gMAM, [1,3,39]) with information about the separatrix crossing
locations.

Several facts have to be mentioned: (i) There have been previ-
ous studies on transitions through periodic orbits. Most of these
studies considered an unstable periodic orbit (rather than hyper-
bolic), which is the boundary of the attraction basin of ametastable
state, and the systems are naturally 2D (e.g., [25–27]). There is a
study of the 3D Lorenz system, based on careful numerical investi-
gations [34]. In addition, a recent work [28] considered systems in
which periodic orbits can be globally characterized by phase angle
variables, and demonstrated metastable transitions between two
stable periodic orbits through unstable periodic orbits. This article
focuses on hyperbolic periodic orbits for less specific problems and
the dimension can be much higher. (ii) This article is based on the
traditional Freidlin–Wentzell large deviation theory and thus does
not discuss the prefactor of the transition rate. However, several
important contributions have been made to analyze nongradient
systems [19,23,24], and they quantitatively discussed the prefactor
given by the Eyring–Kramers formula (see also [38] for a review).
(iii)Most theoretical claims in this article are natural consequences
of Freidlin and Wentzell’s results on orthogonal-type nongradient
systems (see Chap 4.3 of [2]), and our purpose is to combine them
with numerical investigations to make the link between periodic
orbits and rare events explicit. A beautiful concurrent article [23]
also studied nongradient systems using the same tool of orthogo-
nal decomposition (along with other powerful machinery such as
asymptotic analysis), but its scope is complementary, because it as-
sumed saddle point is the only attractor on the separatrix. Note the
orthogonal-type system considered here was called in that article
(a system admitting) ‘transverse decomposition’. (iv) Nongradient
systems in 2D have been extensively investigated (e.g., [29,32,33]
in addition to aforementioned [25–27]), several high-dimensional
systems of practical relevance have been explored [35–37], and
discrete systems have also been studied (e.g., [30,31]).

This article is organized as follows. Section 2 analyzes
orthogonal-type nongradient systems so that the link between
hyperbolic periodic orbit and MLP can be explicitly established.
Section 3 uses concrete examples to illustrate several features of
metastable transitions distinct from gradient systems. In Section
4, String method is modified to identify hyperbolic periodic orbits
in deterministic dynamical systems. Section 5 demonstrates how
this identification improves gMAM-basedMLP computation; using
this improved numerical tool, phase space structures of a (2 + 1)-
dimensional reaction–diffusion–advection PDE are explored, and
differences between orthogonal- and non-orthogonal-type sys-
tems are discussed.

Many examples in this article are generalizations of a 1D gra-
dient system with double well potential V (x) = (1 − x2)2/4,
but the specific form of this potential is not essential—similar
conclusions will apply to smooth bistable potentials. However, our
investigation is limited to systems with two stable fixed points. In
principle, it is possible to study systems with more sinks by first
investigating each barrier crossing event using similar techniques
and then constructing a network of barrier crossings (see for ex-
ample [2,41–44]), but it is beyond the scope of this article.

2. Nongradient systems of orthogonal-type

2.1. The orthogonal-type system

Consider a class of nongradient systems defined on Rd, in the
form of

dX = (−∇V (X) + b(X))dt +
√
ϵdW , (3)

where ∇V and b are smooth and satisfy ∇V (x) · b(x) = 0 for all
x ∈ Rd. Consider also the deterministic version

Ẋ = −∇V (X) + b(X). (4)
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Suppose (4) contains two stable fixed points xa and xb, and their
basins of attractions Da and Db cover the entire phase space
(i.e., Da

⋃
Db = Rd). Consider the separatrix submanifold S ,

which is the boundary between basins of attraction of xa and xb
(i.e., S = ∂Da

⋂
∂Db). Assume there is at least one saddle point

xs or hyperbolic periodic orbit xPO(t) in S that is attracting on S ,
i.e., with its stable manifold containing a neighborhood of xs or
{xPO(t)|∀t} in S. Assume there is a heteroclinic orbit in an auxiliary
dynamical system Ẋ = ∇V (X) + b(X) that connects xa to xs or a
point on xPO(t).

Fixed point or periodic orbit in system (4) satisfies the follow-
ing:

Lemma 1. ∇V (xs) = 0.

Proof. Since xs is a fixed point, −∇V (xs) + b(xs) = 0. By orthogo-
nality of ∇V and b, both are zero. □

Lemma 2. ∇V (xPO(t)) = 0 for all t .

Proof. Denote by T the period. Consider v(t) = V (xPO(t)). We have

v̇ = ∇V · ẋPO = ∇V · (−∇V (xPO) + b(xPO)) = −∥∇V∥
2

≤ 0.

Since v(t) = v(t + T ), v̇ = 0 for all t , and thus ∇V = 0. □

Moreover, attractions of xs and xPO lead to:

Lemma 3. xs is a local minimum of V (x|x ∈ S).

Proof. By the assumption of attraction, there exists r > 0 such that
any point x in B(xs, r) ∩ S approaches xs in system (4). As shown
in the above proof, V is a Lyapunov function of the dynamics, and
therefore V (x) ≥ V (xs). Hence xs is local minimum of V restricted
to S. □

Lemma 4. For any t, xPO(t) is a local minimum of V (x|x ∈ S).

Proof. Analogous to the above saddle point case. □

2.2. The maximum likelihood transition

In orthogonal-type systems and subject to metastable bound-
ary conditions, a local minimizer of the Freidlin–Wentzell action
functional can be explicitly obtained, and the corresponding action
value is determined by the separatrix crossing location.

More specifically, view fixed point as a degenerate periodic
orbit for simplicity, and consider two systems, respectively called
uphill and downhill dynamics, given by

Ẋ∗

1 = +∇V (X∗

1 ) + b(X∗

1 ), X∗

1 (−∞) = xa, X∗

2 (∞) = xs,

Ẋ∗

2 = −∇V (X∗

2 ) + b(X∗

2 ), X∗

2 (−∞) = xs, X∗

2 (∞) = xb,

where xs is an arbitrary point in the hyperbolic periodic orbit
{xPO(t)

⏐⏐t ∈ R} (note Lemma 2 guarantees {xPO(t)|t ∈ R} is
a periodic orbit of both the uphill and the downhill dynamics).
The formal usage of boundary conditions at ±∞ means that X∗

1
and X∗

2 are heteroclinic orbits in respective systems. The uphill
heteroclinic orbitwas assumed to exist in Section 2.1. The downhill
heteroclinic orbit exists because xs is in the separatrix S , which is
the boundary of the attraction basin of xb in (4).

Natural consequences of Freidlin and Wentzell’s results (Chap
3 in [2]) are: (i) in the state space, the concatenation of these
two heteroclinic orbits will give the geometric configuration of an
action local minimizer, and (ii) once this configuration is known,
a local MLP can be obtained by reconstructing the time param-
eterization of the path, via the fulfillment of ∥X ′

∥ = ∥f (X)∥ =√
∥∇V (X)∥2 + ∥b(X)∥2.

To make these claims more precise, let us first recall the defini-
tion of quasipotential:

U(xa, xb) := inf
T1,T2

inf
X∈C̄

xb
xa (T1,T2)

ST1,T2 [X].

A great observation was made in [1,3,39] (see also page 102 in [2])
that the quasipotential problem can be converted to an equivalent
but simpler problem that focuses on the geometry of the mini-
mizer:

Lemma 5 (Geometric Minimum Action).

U(xa, xb) = inf
X∈C̄

xb
xa (0,1)

Ŝ[X], (5)

where the geometric action is defined as

ŜT1,T2 [X] =

∫ T2

T1

(
∥X ′

∥∥f (X)∥ − ⟨X ′, f (X)⟩
)
ds,

and Ŝ is the short hand for Ŝ0,1.

Remark. A recap of the main rationale is the following. It is easy
to see ST1,T2 [X] ≥ ŜT1,T2 [X] by Cauchy–Schwarz, but in fact one
further has infT1,T2,XST1,T2 [X] = infT1,T2,X ŜT1,T2 [X], because time
can always be rescaled such that ∥X ′(s)∥ = ∥f (X)∥, and then
1
2∥Ẋ(s) − f (X(s))∥2

= ∥X ′
∥∥f (X)∥ − ⟨X ′, f (X)⟩. Moreover, it can

be seen by chain rule that ŜT1,T2 [X] does not depend on the time
parameterization of the path or detailed values of T1, T2, and hence
infT1,T2,X ŜT1,T2 [X] = infX Ŝ0,1[X].

Theorem 1. Given a point xs in a hyperbolic periodic orbit that is
attracting on the separatrix S , there is an associated local MLP with
action value 2(V (xs)−V (xa)), and it corresponds to the concatenation
of X∗

1 and X∗

2 .

Proof. Since any path connecting xa with xb must cross the separa-
trix S , Lemma 5 and that the geometric action Ŝ is invariant under
reparameterization lead to

U(xa, xb) = inf
X∈C̄

xb
xa (0,1)

Ŝ[X] = inf
xc∈S,X∈C̄(0,1):X(0)=xa,X( 12 )=xc ,X(1)=xb

Ŝ[X]

= inf
xc∈S

(
inf

X1∈C̄(0, 12 ):X1(0)=xa,X1(
1
2 )=xc

Ŝ0, 12 [X1]

+ inf
X2∈C̄( 12 ,1):X2(

1
2 )=xc ,X2(1)=xb

Ŝ 1
2 ,1

[X2]

)
= inf

xc∈S

(
U(xa, xc) + U(xc, xb)

)
.

Therefore, it suffices to show that xc = xs is a local minimum of
U(xa, xc) + U(xc, xb).

It is easy to see that U(xs, xb) = 0, because X∗

2 by definition is
the zero (and hence the minimizer) of

1
2

∫
∞

−∞

∥Ẋ − (−∇V (X) + b(X))∥2ds.

Furthermore, it was proved in [2] page 100 that the same action
functional under the constraints of X(−∞) = xa and X(∞) =

xc was bounded from below by 2(V (xc) − V (xa)), and that X∗

1
corresponds to the action value of 2(V (xs) − V (xa)).

Since ∇V (xs) = 0 due to Lemma 2, xs is a critical point
of V . Moreover, Lemma 4 shows xs is a local minimum of
V (xc

⏐⏐xc ∈ S). Therefore, there is an open ball B(xs, η) such that
infxc∈B(xs,η)∩SU(xa, xc) = 2(V (xs) − V (xa)), and the infimum is
attained by X∗

1 .
Therefore, X∗

1 and X∗

2 together attain a local minimum of
U(xa, xc) + U(xc, xb) where xc ∈ S is the variable. □
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Remark. Different choices of xs ∈ {xPO(t)
⏐⏐t ∈ R} on the periodic

orbit lead to the same action value (although not the same path),
because Lemma 2 ensures that V is constant along the periodic
orbit.

Remark. The operation of ‘concatenation’ could be made precise.
For instance, one could let X̂ : [0, 1] → Rd be

X̂(t) =

⎧⎪⎪⎨⎪⎪⎩
X∗

1

(
tan(2π t −

π

2
)
)
, t ∈

[
0,

1
2

]
X∗

2

(
tan(2π t −

3π
2

)
)
, t ∈

[
1
2
, 1
]
.

X̂ will be a local minimizer of Ŝ. A path X∗
: (−∞,∞) → Rd

that locally minimizes the original action S can then be obtained
via X∗(τ ) = X̂(t), where dt

dτ =
∥f (X̂)∥
∥X̂ ′∥

.

2.3. Numerical challenges in computing the heteroclinic orbits

Assuming the separatrix crossing location is known,mathemat-
ically it suffices to find the uphill and downhill heteroclinic orbits
X∗

1 and X∗

2 for identifying the local MLP. However, the numerical
computations of X∗

1 and X∗

2 are nontrivial.
Downhill dynamics is relatively easy to obtain. If one manages

to obtain a perturbation x+ of xs such that x+
∈ D◦

b and ∥x+
−xs∥ <

ϵ for some small ϵ, then downhill orbit can be well approximated
by the initial value problem

Ẋ2 = −∇V (X2) + b(X2), X2(−T ) = x+

for some large T . This is because xb is an attractor in this dynamical
system.

Uphill dynamics can be more difficult to obtain. It is possible
(see for example Section 3.4) that −∇V has a nonzero projection
onto the stable subspace at the separatrix crossing location, corre-
sponding to a stable direction of the periodic orbit in the original
dynamics. In this situation, the periodic orbit will become unstable
in the uphill dynamical system Ẋ1 = ∇V (X1) + b(X1) restricted
to the separatrix. Consequently, an accurate identification of the
heteroclinic orbit between xa and the periodic orbit in the uphill
system is nontrivial due to instability.

The numerical approximation of an unstable heteroclinic orbit
is part of an active research field (e.g., [45–52]). The approach we
employ will be based on gMAM (Section 5.2 and Appendix A.2).
gMAM is advantageous in our context of transition through peri-
odic orbit, because it is based on actionminimization and thus good
at ignoring parts with large arclengths that contribute little to the
action.

2.4. Generality of orthogonal-type systems

To write Ẋ = f (X) as an orthogonal-type system, it is easy to
see V needs to satisfy a PDE

(f (x) + ∇V (x)) · ∇V (x) = 0. (6)

Depending on f (·), this PDE may admit only trivial solution or
multiple nontrivial solutions. For example, when f (q, p) = (p,−q)
(i.e., Hamiltonian system of harmonic oscillator), the only solution
is V ≡ constant (see Appendix A.4 for a proof); however, when
f (x1, x2) = (−x1,−x2), V (x1, x2) can at least be V = constant,
V = x21/2 + x22/2, or V = (x1 − x2)2/4. Analysis and numerical
solution of this PDE in 2D are discussed in depth in [33].

Nevertheless, not all decompositions satisfy assumptions in
Section 2.1. In particular, one can always decompose an arbitrary
f (x) by picking b(x) = f (x), V (x) = 0. However, this trivial

decomposition will not satisfy the assumption on the existence of
an uphill heteroclinic orbit in Ẋ = ∇V (X) + b(X).

Besides, (6) may not be easy to solve in high dimensional cases.
For instance, we were not able to verify via (6) if the example
in Section 3.5 is of orthogonal-type (note there x is in an infinite
dimensional function space); instead, we will employ an indirect
approach to obtain numerical evidence that it is not (Section 5.3).

3. Transitions in nongradient systems: case studies

Many experiences and tools for gradient systems do not gener-
alize to nongradient ones without adaptation. For instance, String
method in its classical form [12,13], which is designed and works
beautifully for gradient systems, does not directly apply to ex-
amples in this section; nevertheless, it can be adapted to pro-
vide critical information about nongradient metastable transitions
(Section 4). Let us first illustrate several features of metastable
transitions not seen in gradient-systems.

3.1. 2D SDE system

This is an example for which String method in its classical
form [12,13] converges, but does not produce the MLP.

The system. Consider a simple system with no periodic orbit:{
dr = (1 − z2 − r)dt +

√
ϵdW1

dz = (z − z3)dt +
√
ϵdW2 .

(7)

When noise is absent (ϵ = 0), there are 3 fixed points: r = 0, z =

−1: sink; r = 0, z = 1: sink; r = 1, z = 0: saddle. Also, the
separatrix is z = 0.

This system is nongradient. On the other hand, it is of
orthogonal-type, and

V (r, z) = (1 − z2)2/4, b(r, z) = (1 − z2 − r, 0)

satisfies all assumptions in Section 2.1.

The transition. When applied to nongradient systemswith general
form dx = f (x)dt +

√
ϵdW , String method seeks path φ(α) that

satisfies φα ∥ f (φ). Fig. 1(a) illustrates the path from (−1, 0) to
(1, 0) obtained by String method.

This path, however, does not correspond to the minimizer of
the action (i.e., maximizer of transition rate). Fig. 1(b) illustrates
the MLP numerically obtained by gMAM. By Theorem 1, the exact
minimum action is 2(V (1, 0) − V (−1, 0)) = 0.5, and gMAM result
is an accurate numerical approximation.

3.2. 3D SDE system (rotationally-symmetric)

This is an example for which String method in its classical
form [12,13] does not converge. The system contains no saddle
point, and an MLP provably crosses a periodic orbit (provable
because the system is of orthogonal-type). There are infinitely
many MLPs and each is of an infinite length.

The system. Consider⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dx =

(
(1 − z2)

x√
x2 + y2

− x − y

)
dt +

√
ϵdW1

dy =

(
(1 − z2)

y√
x2 + y2

− y + x

)
dt +

√
ϵdW2

dz =
(
z − z3

)
dt +

√
ϵdW3 .

(8)

When noise is absent (ϵ = 0), the system can be rewritten in
cylindrical coordinates:⎧⎨⎩ṙ = 1 − z2 − r
θ̇ = 1
ż = z − z3

(9)
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(a) Path obtained by string method. (b) MLP obtained by gMAM.

Fig. 1. Transitions from (−1, 0) to (1, 0) in 2D SDE system (7).

and recognized as a rotated version of the 2D system (7) without
noise. It contains the following limit sets:

• x = 0, y = 0, z = −1: attracting fixed point.
• x = 0, y = 0, z = 1: attracting fixed point.
• z = 0, x2 + y2 = 1: periodic orbit, on which θ̇ = 1; it

is saddle-like (i.e. hyperbolic) because it is unstable along z
direction but stable in z = 0 plane.

Again, its separatrix is z = 0. The system is nongradient, of
orthogonal-type, with

V (x, y, z) = (1 − z2)2/4

b(x, y, z) =

(
(1 − z2)

x√
x2 + y2

− x − y,

× (1 − z2)
y√

x2 + y2
− y + x, 0

)
.

MLPs. There is a periodic orbit on the separatrix but no fixed
point, and this clearly contrasts with gradient systems which do
not have periodic orbits. By Theorem 1, an MLP in this system
is the concatenation of two heteroclinic orbits connecting stable
points and the periodic orbit. Because the θ̇ = 1 rotation decouples
with the r, z dynamics (see Eq. (9)), given the MLP r(t), z(t) in the
previous 2D example (Section 3.1), an MLP in this system is given
by

x(t) = r(t) cos(t + θ0), y(t) = r(t) sin(t + θ0), z(t),

where θ0 is an arbitrary constant. Because of θ0, MLPs are not
unique.

Note the length of this path is infinite. This is because up-
hill/downhill dynamics takes infinite time to reach/leave the sep-
aratrix (z = 0). Since angular velocity is nonzero constant, infinite
rotations occur. Because the rotation radius is approximately r = 1
near the separatrix, infinite rotations lead to an infinite arc-length.

Such an infinite winding creates numerical problems. In fact,
one may attempt to use String method with fixed end points xs
and xb to obtain the downhill dynamics, but this will not work well
because the stringwill windmore andmore around the limit cycle,
and any finite discretization of the String will eventually become
insufficient and start consuming arc-lengths from the parts away
from the separatrix.

gMAM, on the other hand, suits to find a reasonable finite-
length approximation of an MLP. This is because the infinite
winding near the separatrix takes significant physical time, but
contributes little to the action. Since gMAM minimizes a ge-
ometrized action that is independent of the time parameterization
of the path, when minimizing in a space of finitely-discretized

paths,most of the infinitewinding can be approximated by a finite-
length segment without increasing the action too much.

Fig. 2 illustrates two MLPs approximated by a variant of gMAM
(Section 5). The exact minimum action is 2(V (cos θ, sin θ, 0) −

V (0, 0,−1)) = 0.5, due to Theorem 1. The numerical MLPs are,
of course, only finite length approximations.

3.3. 3D SDE system (no rotational symmetry)

This example drops the rotational symmetry of the previous
example but remains orthogonal-type. There is still a hyperbolic
periodic orbit and no saddle. MLPs again utilize the periodic-orbit
and share features similar to the previous example.

The system. Consider⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dx =

(
−(z + 1)(z − 2)

x
(x4 + y4)1/4

− x − y3
)
dt +

√
ϵdW1

dy =

(
−(z + 1)(z − 2)

y
(x4 + y4)1/4

+ x3 − y
)
dt +

√
ϵdW2

dz = (−(z + 1)(z − 2)z) dt +
√
ϵdW3 .

(10)

When noise is absent (ϵ = 0), the system contains the following
limit sets:

• x = 0, y = 0, z = −1: attracting fixed point.
• x = 0, y = 0, z = 2: attracting fixed point.
• z = 0, x4 + y4 = 16: periodic orbit, on which ẋ = −y3

and ẏ = x3; it is saddle-like because it is unstable along z
direction but stable in z = 0 plane.

The separatrix is z = 0. This nongradient system is again of
orthogonal-type, with

V (x, y, z) = z4/4 − z3/3 − z2

b(x, y, z) =

(
−(z + 1)(z − 2)

x
(x4 + y4)1/4

− x − y3,

− (z + 1)(z − 2)
y

(x4 + y4)1/4
+ x3 − y, 0

)
.

MLPs. An MLP is again the concatenation of two heteroclinic or-
bits. Although there is no longer a rotational symmetry, MLP is
still not unique. See Fig. 3 for two numerically approximatedMLPs.
Note the exact minimum action is 2(V (2, 0, 0) − V (0, 0,−1)) =

5/6 ≈ 0.8333, and the gMAM approximations can be improved
by using more discretization points. Again, a true MLP is of infinite
length due to infinite winding near the periodic orbit.
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(a) (b)

Fig. 2. Finite length approximations of MLPs between (−1, 0, 0) and (1, 0, 0) in 3D SDE system (8). Computed by up–down gMAM (described in Section 5.2) with different
intersections at the separatrix.

(a) (b)

Fig. 3. Finite length approximations of MLPs between (−1, 0, 0) and (1, 0, 0) in 3D SDE system (8). Computed by up–down gMAM (described in Section 5.2) with different
intersections at the separatrix.

3.4. 1D-space advection–diffusion–reaction SPDE

Now consider an infinite-dimensional example. It is nongradi-
ent, but still of orthogonal-type, andpreviously observed transition
features persist.

The system. Consider

φt = κφxx + φ − φ3
+ cφx +

√
ϵη (11)

with periodic boundary condition φ(x + 1, t) = φ(x, t),
where η(x, t) is spatiotemporal white-noise with covariance
E[η(x, t)η(x′, t ′)] = δ(x − x′)δ(t − t ′); 0 < κ ≪ 1.

Without advection and noise (i.e., c = 0, ϵ = 0), this system is
1D-space Allen–Cahn [53], which is a classical model for alloy. For
c ̸= 0, the advectionmakes the system nongradient.When viewed
as an infinite dimensional dynamical system, (11) is of orthogonal-
type:

Proposition 1. Given C2 function u(x) satisfying u(x) = u(x + 1),
define

V [u] =

∫ 1

0
κ
1
2
u2
x +

1
4
(1 − u2)2 dx,

b[u] = cux,

and introduce inner product

⟨u, v⟩ =

∫ 1

0
u(x)v(x)dx.

Then
⟨
δV
δu [u], b[u]

⟩
= 0, and the system (11) with ϵ = 0 is equivalent

to

φt (·, t) = −
δV
δu

[φ(·, t)] + b[φ(·, t)].

Fixed points and periodic orbits in the ϵ = 0 system can also be
characterized:

Proposition 2. When c ̸= 0, ϵ = 0, the dynamical system (11)
contains only three fixed points: us(x) ≡ 0, unstable; u+(x) ≡ 1,
stable; u+(x) ≡ −1: stable.

Proposition 3. When c = 0, ϵ = 0, the dynamical system (11) con-
tains three uniform fixed points, us(x) ≡ 0, unstable; u+(x) ≡ 1, sta-
ble; u+(x) ≡ −1: stable. Furthermore, when 0 < κ ≤ 1/(2π )2, there
are also finitelymany non-uniform fixed points, i.e., non-constant u(x)
that solves κuxx + u − u3

= 0. The number of fixed points nonstrictly
increases as κ decreases.

Proposition 4. When c ̸= 0, ϵ = 0, each non-uniform fixed point
u(x) in the dynamical system (11)with c = 0 bifurcates into a periodic
orbit φ(x, t) = u(x + ct).

Proofs are in Appendix A.3.
Note we exhausted all fixed points in (11), but we have not

proved whether periodic orbits identified by Proposition 4 are the
only periodic orbits. Worth mentioning is, ω-limit sets other than
fixed points and periodic orbits have been ruled out in this specific
system [54].

Analytical characterization of separatrix structures in this in-
finite dimensional system is not easy. For some classical results,
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including investigations on dynamics on the separatrix, we refer
to an incomplete list [54–62].

MLPs. Consider transitions from u = −1 to u = 1 with c ̸= 0. The
only fixed point on the separatrix is u = 0. When κ ≤ 1/(2π )2,
there are also periodic orbit(s) on the separatrix. Fig. 4 illustrates
three local MLPs,3 which respectively cross the separatrix at the
u = 0 fixed point, a periodic orbit that bifurcated from a non-
uniform fixed point corresponding to a 1-periodic solution of
κuxx + u− u3

= 0, and another periodic orbit that bifurcated from
a 1

2 -periodic solution of κuxx + u − u3
= 0 (for precise definitions

of these periodic orbits, see Proposition 4; when c = 0, the latter
two local MLPs degenerate to paths that cross separatrix at fixed
points). Hyperbolicity of these fixed points and periodic orbits can
be checked numerically.

The exact values of local action minima can be obtained by
Theorem 1 once the separatrix crossing location is fixed. They
are respectively 0.5, ≈ 0.2665, and ≈ 0.4851. Therefore, the
numerically computed MLPs are rather accurate.

Note there has been a long time interest in studyingmetastable
transition rate in this system. See for instance the classic paper
of [63], where bounds of the action are analytically obtained for
estimating the rate.

3.5. 2D-space advection–diffusion–reaction SPDE

Our final example generalizes the previous example to 2D-
space. Numerical evidence suggests this nongradient system is no
longer orthogonal-type (Section 5.3). The system is the following
2D-space 1D-time SPDE

φt = κ∆φ + φ − φ3
+ c sin(2πy)∂xφ +

√
ϵη, (12)

with periodic boundary conditions φ(x + 1, y, t) = φ(x, y, t) and
φ(x, y + 1, t) = φ(x, y, t). 0 < κ ≪ 1. Adding noise to nonlinear
PDE with ≥ 2 spatial dimension is nontrivial (see for instance
[64–66]), and here we follow [67]: η := φλ ∗ η′ is a spa-
tially regularized noise, where ∗ denotes convolution, φλ(x, y) =

λ−2φ(x/λ, y/λ) with an approximate identity φ, and η′ is spa-
tiotemporal white-noise with covariance E[η(x, y, t)η(x′, y′, t ′)] =

δ(x − x′)δ(y − y′)δ(t − t ′).
This system is a 2D Allen–Cahn equation with additional shear

and noise. Local MLPs through saddle points in this system have
been studied in [1]. Here we consider whether there are local MLPs
intersecting with periodic orbits instead—note Theorem 1 only
applies to orthogonal-types and cannot answer this question.

We numerically identified hyperbolic periodic orbits in this
system, which bifurcated from saddle points as c increased. Local
MLPs that cross these periodic orbits were then numerically iden-
tified. However, detailed results are deferred to Section 5.3, as it is
necessary to first introduce the employed numerical tools.

4. Hyperbolic periodic orbit identification in general nongradi-
ent systems by p-string method

This section modifies String method to identify hyperbolic pe-
riodic orbits. The method applies to general nongradient systems
not restricted to orthogonal-type. The only requirement is, the
orbit of interest has to be attracting on the separatrix between two
attraction basins.

The identification of periodic orbits is an important problem on
its own, because they are the second simplest class of limit sets
and characterize a dynamical system’s behaviors. Stable periodic
orbits can often be obtained as limits of numerically integrated
initial value problems, and similarly fully unstable periodic orbits

3 Sometimes also referred to as nucleation instantons.

can be found by integration backward in time. Hyperbolic peri-
odic orbits, however, are more difficult to compute. One popular
approach is to solve a boundary value problem, oftentimes via
a combination of shooting method and optimization techniques
(e.g., [68–71]). Methods based on parameterization and Fourier
series have also been successful (e.g., [72,73] and [74]). In addition,
there are approaches based on geometric/topological considera-
tions (e.g., [75]). However, as the unstable manifold of the periodic
orbit increases in dimension (e.g., Sections 3.4 and 3.5), perfor-
mances of these methods oftentimes deteriorate.

We adopt an alternative approach based on the augmented
dynamical system that String method constructs. In this system,
a hyperbolic periodic orbit of the original system becomes part of
a stable limit set, and numerics are thus enabled.

4.1. The method

Consider

ẋ = f (x) (13)

with smooth enough f (·). Suppose this dynamical system contains
two stable fixed points xa and xb, and their basins of attraction
Da and Db cover the entire state space. Denote the separatrix
submanifold by S. Assume there is at least one fixed point xs or
periodic orbit xPO(t) that is attracting on S .
ω-limit sets of the dynamics restricted to the separatrix sub-

manifold, such as fixed point or periodic orbit, are unstable in the
full phase space. Due to this instability, numerical errors make it
difficult to locate these limit sets. We use the following algorithm
to approximate such hyperbolic fixed point or periodic orbit:

p-String method.

1. Evolve a discretized path from xa and xb (i.e., the initial
path φ0(·) satisfies φ0(1) = xa and φ0(n + 1) = xb, with
n sufficiently large) by String method (see e.g., [12,13] or
Appendix A.1)—that is, alternate between two substeps:
evolution of each point on the path by (13), and reparam-
eterization of the path.

2. Terminate the evolution when convergence towards a peri-
odic evolution is detected (including the degenerate case of
converged String evolution).
Specifically, at each step i, compute the action Si of the
current path φi. If there is ĩ < i such that

⏐⏐Si −

Sĩ
⏐⏐/max{|Sĩ|, |Si|} < threshold, trigger an additional check

on whether ∥φi(·) − φĩ(·)∥ is small enough; if yes, periodic
behavior is detected and String evolution terminates.

3. Denote by F the step at which String evolution was termi-
nated. Store the last path φF (·). Further evolve each point on
this path, i.e.,φF (j) for 1 ≤ j ≤ n+1, according to the dynam-
ics of (13), however this time without reparameterization.

4. Terminate the evolution when all points but one are at-
tracted to xa or xb. That is, at each step i, compute dj =

min{∥φi(j) − xa∥, ∥φi(j) − xb∥} for each 1 ≤ j ≤ n + 1.
Terminate when {j

⏐⏐|dj| > h} contains only one element j∗,
where h is the evolution timestep.

5. Output φF (j∗) as the result. It is a fixed point if F̃ = F − 1
(recall F̃ is the largest integer less than F such that

⏐⏐SF −

SF̃
⏐⏐/max{|SF̃ |, |SF |} < threshold and ∥φF (·) − φF̃ (·)∥ is small

enough). Otherwise it is a point on a periodic orbit, whose
period is approximately (F − F̃ −1)h; this periodic orbit can
be approximated by evolving φF (j∗) according to (13) for an
appropriate amount of time.

Remark. The method still works if xa and xb are not exactly the
two sinks but in different attraction basins. In addition, if the
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(a) Null nucleation: separatrix crossing at a uniform saddle.

(b) Single nucleation: separatrix crossing at periodic orbit #1.

(c) Double nucleation: separatrix crossing at periodic orbit #2.

Fig. 4. Finite length approximations of MLPs between u = −1 and u = 1 in SPDE (11), computed by up–down gMAM (described in Section 5.2) with different intersections
at the separatrix. κ = 0.005, c = 0.1. Each MLP is illustrated by seven snapshots, uniformly distributed from reparameterized time 0 to 1, with green indicating the stable
points and red the intersection with the separatrix. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

attractors of the two basins are not points, e.g., limit cycles instead,
the method can still work when n is large enough and steps 3–5
are modified accordingly; however, an n too large might lead to
inefficient computations.

Remark. The accuracy of p-String method increases with n. How-
ever, larger n corresponds to more computations. Two possible
improvements are, (i) an adaptive version of p-String, in which
points on the path away from the separatrix are discarded, so
that more points can be placed near the separatrix, and (ii) to use
the p-String result of as the initial condition of some other high-
fidelity method (e.g., Newton or quasi-Newton based; thanks to an
anonymous referee’s comment).

4.2. The rationale

The algorithm contains two parts. Steps 1–2 are based on the
idea that the limit set of String evolution dynamics contains a limit
set of (13). More specifically, consider two evolutions of paths, one
without reparameterization and one with:

ψt (α, t) = f (ψ(α, t)), ψ(0, t) = xa, ψ(1, t) = xb
φt (β, t) = f (φ(β, t)) + r(β, t), ψ(0, t) = xa, ψ(1, t) = xb,

where r(β, t) is a virtual force parallel toφβ for ensuring a constant
distance parameterization ∥φβ∥ = constant. Geometrically,ψ(·, t)
and φ(·, t) represent the same path in phase space, i.e., for any α ∈

[0, 1], there exists a β(t) ∈ [0, 1] such that φ(β(t), t) = ψ(α, t). It
is just that their parameterization are different: for large t , φ(·, t)
is much less singular than ψ(·, t). String method computes φ due
to numerical considerations [12,13].

Note ψ(·, t) has to cross the separatrix, supposedly at α0(t).
α0(t) is in fact a constant α0, because separatrix is invariant under
dynamics. Given T large enough,ψ(α0, T ) will approach anω-limit
set on the separatrix. Since there is β0(T ) such that φ(β0(T ), T ) =

ψ(α0, T ), φ(β0(T ), T ), which is a point on the path given by String
evolution, approximates a point on the limit set.

The second part of the algorithm (Steps 3–5) finds β0(T ) and
thus φ(β0(T ), T ). The idea is, if a discretized path is evolved point-
wise under (13) without reparameterization, points away from the
separatrixwill soonbe attracted towards xa or xb, and the point that
remains most further away from xa and xb corresponds to what is
on the separatrix. Numerical error of this identification naturally
decreases as the path discretization is refined.

4.3. Example results

2D SDE system. p-Stringmethod approximates the (0, 1) saddle as

z = −0.0000 . . . , r = 1.0000 . . . .

Computation used n = 30 discretization points, h = 0.01 step size
forward Euler evolution, threshold = 10−6, and initial path linear
from (−1, 0) to (1, 0).

3D SDE system (rotational). p-String method identifies a point on
the periodic orbit as

x = −0.7115 . . . , y = 0.7018 . . . , z = 0.0000 . . . .

It corresponds to r =

√
x2 + y2 = 0.9993 . . .. Recall the true

periodic orbit is r = 1, z = 0.
Computation used n = 50, h = 0.01 Verlet evolution,

threshold = 10−6, and random initial path from (0, 0,−1) to
(0, 0, 1) (random for avoiding singularity at |z| ̸= 1, x = y = 0).

3D SDE system (non-rotational). p-Stringmethod identifies a point
on the periodic orbit as

x = 1.9602 . . . , y = −1.0365 . . . , z = −0.0038 . . .

It corresponds to (x4 +y4)1/4 = 1.9974 . . .. Recall the true periodic
orbit is (x4 + y4)1/4 = 2, z = 0.

Fig. 5 left panel illustrates the terminal configuration of the
string φf . Three facts are: (i) it is not MLP; (ii) it is not necessarily
perpendicular to the separatrix, even though −∇V is perpendic-
ular to the separatrix; (iii) the separatrix crossing location on the
string (i.e. β0(T ) in Section 4.2) is not a constant; instead, since the



8 M. Tao / Physica D 363 (2018) 0–16

Fig. 5. Identification of periodic orbit in system (10) by p-String method. Left figure illustrates the path at termination of the string evolution. Right figure illustrates where
intersection between the path and the separatrix is located on the path.

string evolution converges to a limit cycle, β0(·) converges to an
oscillation.

Computation was done using n = 1000, h = 0.01 Verlet evo-
lution, threshold = 10−6, and initial path linear from (0, 0,−1) to
(0, 0, 2). We chose a large n only so that β0(T ) has three significant
digits and Fig. 5 right panel is numerically smooth.

1D-space SPDE. According to Proposition 4, any point u(x) on
the true periodic orbit satisfies κuxx + u − u3

= 0. With
linear/vertical/double vertical initial string configurations (see
Appendix A.5), p-String method identified u’s that numerically
satisfy this equation (L2 residuals: 0 / 0.0033 . . . / 0.0014 . . .) and
govern the MLPs of null/single/double nucleation. See red in Fig. 4
for graphs of these u’s.

Simulation settings are: n = 40, h = 0.01, threshold = 10−6,
space is pseudospectrally discretized using first 32 modes, and
time integration is based on Strang splitting, where exponential
integrator is used for diffusion and two half-step Euler integrations
are used for reaction and advection.

2D-space SPDE. See Section 5.3.

5. Identified periodic orbit helps understand metastable tran-
sitions

5.1. Transition rate

The transition rate from xa to xb is quantified by the quasipo-
tential up to a prefactor. If one ignores the prefactor, which is
generally not provided by a large deviation theory (e.g., [76]), then
it is sufficient to investigate the minimum action.

For systems of orthogonal-type (including gradient systems),
once a fixed point or a periodic orbit that attracts on the separatrix
is identified, there is an associated local minimum of action, ex-
pressed in terms of a barrier height (Theorem1; this is analogous to
the Arrhenius rate formula [77]). Therefore, if one only cares about
the transition rate, computation of the corresponding transition
path is not necessary. However, to obtain the global minimum of
action (and hence the exponent in the transition rate), one has to
exhaust attractors on the separatrix, which could be challenging
for high dimensional problems.

For general non-orthogonal-type systems, however, there may
be multiple local minima of the action associated with one separa-
trix crossing location xs. Section 5.3 contains an example. Clearly,
no single function of xa and xs can provide suchmultiple local min-
imum values. The global minimum value, on the other hand, can
still be defined as a function of xa and xs (i.e., the quasipotential),
but it is unclear whether this function relates to some physical
barrier height.

5.2. Transition path and its numerical computation

TheMLP from xa to xb bridges two attraction basins and thus has
to cross the separatrix. If the crossing location is known (denoted
by xs), the MLP can be numerically obtained more efficiently.
This is because MLP can be made parameterization-independent
(see [1,3,39] or Section 2.2), and the concatenation of two MLPs,

first from xa to xs and then from xs to xb, corresponds to the MLP
from xa to xb. Finding these two shorter MLPs generally requires
less exploration in the state space.

xs is thus helpful. For orthogonal-type systems, Theorem 1 im-
plies that a fixed point or a point on a periodic orbit that attracts on
the separatrix is the xs of a local MLP. Such a point can be identified
by p-String method (Section 4). For general systems, given any
local MLP, there is always a path with the same action that crosses
a point in theω−limit set (i.e., attractor) on the separatrix, because
one can modify the given local MLP by adding a link from its
separatrix crossing location to the ω−limit set of that crossing
location, without spending any additional noise. However, it is
left unproved whether any point in an attractor corresponds to
a local MLP. In our numerical experiments, various hyperbolic xs
(attracting on the separatrix) do appear to correspond to localMLPs
(see Section 5.3).

We use gMAM to obtain the xa → xs MLP. To obtain the
xs → xb MLP, note it is in fact a zero of the action functional, no
matter whether the system is of orthogonal-type. This is because
no noise is required once the system is in the attraction basin of
xb. Therefore, theoretically speaking, one only needs to find the xa
to xs MLP, and then compute the stable heteroclinic orbit from xs
to xb. Numerically, a perturbation of xs in the attraction basin of
xb is needed, so that downhill heteroclinic orbit can be computed
in finite time. There are multiple ways to find such a perturbation,
andwe choose to use a coarse gMAM computation. More precisely,
we consider dx = f (x)dt+

√
ϵdW and use the following algorithm:

up–down gMAM for computing MLP that crosses separatrix at xs.

1. Choose a priori three positive integer parameters:∆, n1 and
n2; in general, n1 ≫ n2.

2. Compute an MLP from xa to xs using gMAM with paths
discretized by n1 + 1 points. Denote by xupj (1 ≤ j ≤ n1 + 1)
the resulting path.

3. Compute an MLP from xs to xb using gMAM with paths
discretized by n2+1 points. Denote by x̃down

j (1 ≤ j ≤ n2+1)
the resulting path.

4. Let x+
= x̃down

2 . Integrate ẋ = f (x) with initial condition
x(0) = x+. The integration step size δt is usually chosen the
same as the one used for gMAM evolutions. Terminate the
integration at the smallest time T satisfying ∥x(T )−xb∥ ≤ δt .
Denote by x̂k (0 ≤ k ≤ T/δt) the numerically integrated
discrete trajectory.

5. Let

xdown
j =

{
x̂(j−1)∆, 1 ≤ j ≤ n2;

xb, j = n2 + 1,

where n2 = T/δt/∆ + 1. That is, down sample once every
∆ points in x̂ to form xdown. If there is no requirement on
the number of discretization points,∆ can simply be chosen
as 1.

6. Form a discrete path xj by

xj =

{
xupj , 1 ≤ j ≤ n1 + 1;

xdown
j−n1−1, n1 + 2 ≤ j ≤ n + 1,

where n = n1 + n2 + 1.
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(a) n = 50. (b) n = 100.

Fig. 6. MLPs in 3D SDE system (8) approximated by gMAM.

7. Compute a numerical approximation of the geometrized
action

S =

∫ 1

0
∥ẋ(α)∥∥f (x(α))∥ − ⟨ẋ(α), f (x(α))⟩dα

using quadrature and finite difference for ẋ. Be mindful that
α ∈ [0, 1] is discretized to j using non-uniform grid sizes,
1

2n1
in xup region, and 1

2n2
in xdown regions.

Comparison with the original gMAM:. Table 1 compares gMAM and
up–down gMAM (with its gMAM component implemented in the
same way; xs is from Section 4.3, computed by p-String method).

Up–down gMAM demonstrates better accuracy in minimizing
the action. The reason is, gMAM-approximated MLP intersects the
separatrix at a location further from the periodic orbit (compare
Fig. 6 with the n = 100 up–down gMAM results in Fig. 2). This
intersection can bemade closer to the periodic orbit by increasingn
in gMAM.However, p-String ismuchmore accurate (the separatrix
crossing location used by up–down gMAM in Fig. 2 was computed
by p-String with n = 50). p-String suits the identification of
separatrix crossing better, because a local MLP through a periodic
orbit is of infinite arclength, and gMAM has to compromise and
approximate it by a path of finite arclength; on the contrary,
p-String not necessarily approximates the MLP and the string can
be of finite length (this is in fact provable for the example in
Section 3.2, and the long-time string evolution will just be Fig. 1(a)
rotating in the 3D space).

Up–down gMAM also appears to be more efficient. It usually
converges faster, and sometimes allows larger time step too.When
same step size is used, the total computational cost of up–down
gMAM can be characterized by n1 · steps1 + n2 · steps2, because
the cost of up–down gMAM Step 4 is negligible comparing to
Steps 2 and 3, and gMAM cost is characterized by n · steps.
In most of our experiments, n1 · steps1 + n2 · steps2 < n ·

steps. To understand this comparison in a fair way, however, note
(i) gMAM works for more general problems, e.g., finding MLP
between arbitrary points; (ii) up–down gMAM uses additional
information on xs, whose computation by p-String method also
takes time—this cost, however, was much smaller in our experi-
ments than that of up–down gMAM Steps 2 and 3. To provide an
illustration, for generating results in the ‘‘3D SDE non-rotational’’
column in Table 1 on an Intel i7-4600 laptopwithMATLAB R2016b,
gMAMtook 108.6 s,while p-String took 16.7 s andup–downgMAM
took 54.8 s (altogether: 71.5 s, 65.8% of gMAM); for the ‘‘3D SDE
non-rot. (finer)’’ column, gMAM took 847.4 s, while p-String took
16.7 s and up–down gMAM took 378.0 s (altogether: 394.7 s, 46.6%
of gMAM).

5.3. MLPs in a non-orthogonal-type system (12)

Although local MLPs in orthogonal-type systems can be under-
stood by Theorem 1, in general nongradient systems, it is unclear
whether an arbitrary point in the attractor on the separatrix still
corresponds to a local MLP. We numerically demonstrate that
system (12) is not of orthogonal-type, and yet there are still local
MLPs that cross identified saddle points and periodic orbits.

Fixed points and periodic orbits. Without noise, system (12) is

φt = κ(φxx + φyy) + φ − φ3
+ c sin(2πy)∂xφ. (14)

Viewed as a dynamical system in t , u(x, y) = −1, u(x, y) = 1 and
u(x, y) = 0 are fixed points. When shear is absent (i.e., c = 0), we
know u = ±1 are sinks, and u = 0 is a saddle.

There are also non-uniform fixed points. One group of them
is invariant in x and independent of c values (see Fig. 7). It is
straightforward to obtain them:

Proposition 5 (Horizontal Fixed Points). Any fixed point ϕ(y, t) ≡

v(y) in 1D-space subsystem ϕt = κϕyy + ϕ − ϕ3 (quantified in
Proposition 3) corresponds to a fixed point φ(x, y, t) ≡ u(x, y) :=

v(y) in (14).
A second group is almost invariant in y, sheared to an extent

determined by small c. See Fig. 8 for an illustration, where these
fixed points are numerically identified by the p-String method
(Section 4.1) with vertical initial path (see Appendix A.5). Their
existences at small c values are suggested by the following propo-
sition (provable by a simple Taylor expansion):

Proposition 6 (Vertical Fixed Points; Asymptotic). Let v(·) be a
1-periodic solution to κvxx + v − v3 = 0. When c is small enough,

ũ(x, y) = v

(
x +

c
4π2κ

sin(2πy)
)

+ o(c)

satisfies κ(ũxx + ũyy) + ũ − ũ3
+ c sin(2πy)∂xũ = 0.

Periodic orbits are also numerically observed. In experiments
with p-String method, as c increases (κ fixed), each vertical fixed
point eventually bifurcates into a periodic orbit. Fig. 9 illustrates
one of such periodic orbits, which bifurcated from the 1-nucleation
fixed point in Fig. 8. A video of this periodic orbit is available at
http://youtu.be/rJ74090jIvI.

Fig. 10 illustrates numerically when bifurcation occurs to the
1-nucleation fixed point. Such bifurcations are intuitive, because
when c is small, fixed points are suggested by Proposition 6, but
when c is large, the system is dominated by shear that leads to
periodic dynamics.

Lastly, note there are fixed points other than horizontal and
vertical types. For example, Fig. 11 illustrates another fixed point
at c = 0, obtained by p-String method with radial initial path (see
Appendix A.5).

http://youtu.be/rJ74090jIvI
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Table 1
Comparison between gMAM and up–down gMAM.

System 2D SDE 3D SDE rotational 3D SDE non-rotational 3D SDE non-rot. (finer) 1D-space SPDE κ = 0.01, c = 0.1

n1 100 100 100 200 40
Total evolution steps1 79 36675 21074 74130 37968
n2 10 20 20 40 10
Total evolution steps2 78 4679 4099 5646 6676
∆ 1 1 1 1 10
up–down gMAM action 0.50008 0.50031 0.85490 0.84123 0.37873
n 100 100 100 200 40
Total evolution steps 148 38661a 43140a 166123a 16796
gMAM action 0.49987 0.50448 0.86163 0.84545 0.39827
Termination threshold 10−6 10−5 10−6 10−6 10−6

Evolution step size 0.1 0.01 0.01 0.01 and 0.005b 0.01
True action 0.5 0.5 5/6 ≈ 0.8333 5/6 ≈ 0.8333 ≈ 0.3732

a gMAM path evolution was terminated when the action values converge (threshold on the amount of change: 10−10 for 3D SDE (rot.) and 10−8 for 3D SDE (non-rot.)).
b Up–down gMAM uses h = 0.01 and gMAM uses h = 0.005, because gMAMwith 0.01 is no longer convergent—its action value oscillates around 0.89.

Fig. 7. Horizontal fixed points numerically obtained by p-String method. κ = 0.005. c value is irrelevant. Values are represented by gray scale, white −1 and black +1.

Fig. 8. Vertical fixed points numerically obtained by p-String method. κ = 0.005. In 1st column, c = 0; in 2nd column, c = 0.01; in 3rd column, c = 0.02, and there is no
longer a fixed point with 2-nucleations.

Local MLPs. Consider paths from u = −1 to u = 1. For con-
ciseness, we only describe transitions through (i) uniform u = 0,

(ii) 1-nucleation horizontal fixed point, and (iii) periodic orbit that
bifurcated from 1-nucleation vertical fixed point.
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Fig. 9. Snapshots of a periodic orbit that bifurcated from 1-nucleation vertical fixed point. κ = 0.005, c = 0.05.

Fig. 10. Bifurcation of fixed point to periodic orbit at c ≈ 0.032, illustrated by
∥φh − φ∥2 as a function of c , where φ is the result of converged p-String method
(with 10−8 tolerance threshold), and φh is a h = 0.1 step evolution of φ. κ = 0.005,
c value is sampled from 0 to 0.05 with 0.001 increment.

Fig. 11. Diamond fixed point numerically obtained by p-String method. κ = 0.005,
c = 0.

(i) The simplest transition is through uniform u = 0. Provably,
there is a local MLP that contains only uniform images (i.e., inde-
pendent of x or y), and its action is the same as theminimumaction
of transition from z = −1 to z = 1 in ż = z − z3, which is 0.5
according to Theorem 1. Both gMAM and up–down gMAM pro-
duced accurate approximations of this local MLP (detailed results
not shown).

(ii) Numericallywe foundmultiple localMLPs through the same
1-nucleation horizontal fixed point. The fixed point was computed
by p-String method (Section 4.1; with threshold = 10−6) using
horizontal initial path. Fig. 12 illustrates two local MLPs computed
by up–down gMAM. For the first local MLP, each point on the
path is independent of x, and the shear plays no role in the tran-
sition. This case is essentially the same as Allen–Cahn in 1D space
(Section 3.4), and the true minimum action can be computed by

Theorem 1 as ≈ 0.3732. For the second local MLP (first docu-
mented in [1]), however, shear facilitates the transition in the sense
that action is smaller (and hence the transition is more likely).

gMAM with appropriate initial paths reproduce local MLPs of
both types. Resulting paths are not visually discernible from up–
down gMAM’s results, and therefore not shown. gMAM minimum
actions are ≈ 0.3740 and ≈ 0.3720, slightly less optimized than
that of up–down gMAM. The local MLP seems to cross the fixed
point, as we computed the minimum of L2 distances between the
fixed point and each image on gMAM path to be ≈ 0.0049 ≪ 1
in the shear-indifferent case, and ≈ 0.0093 ≪ 1 in the shear-
facilitated case.

We thus conclude the system cannot be of orthogonal-type,
because at least two local MLPs with different action values cross
the separatrix at the same fixed point; otherwise there will be a
contradiction with Theorem 1.

This finding does not contradict the definition of quasipotential,
because the quasipotential is a global infimumand thus unique, but
what we observed are local minimizers and there could be many
of them. For orthogonal-type systems, the action local minimum
was proved to be unique once xa and xs are given, but now we see
numerically it is not always the case.

(iii) It seems, like the orthogonal case, that each point on the
periodic orbit (bifurcated from 1-nucleation vertical fixed point) is
associated with at least one local MLP. See Fig. 13 for several local
MLPs computed by gMAM and up–down gMAM. Fig. 13(a) uses
xs computed by p-String method (Section 4.1; with threshold =

10−6 and vertical initial path). This xs is not where the gMAM
result crosses the separatrix (Fig. 13(b)); however, both points are
approximately on the same periodic orbit (the L2-induced distance
between gMAM-approximated MLP and the periodic orbit is ≈

0.0199 ≪ 1). An additional up–down gMAM simulation with its
separatrix-crossing aligned to that of gMAM (Fig. 13(c)) produces
a path visually identical to that by gMAM. Meanwhile, up–down
gMAM produces slightly better optimized action values (all three
actions should be equal if there were infinite computing power to
permit n → ∞ and h → 0).

This class of local MLPs are certainly not the globalMLP because
of their larger action values—shear actually hinders the transition
in these cases.

Note the gMAM result alone (Fig. 13(b)) is not sufficient to
demonstrate crossing at a periodic orbit: we evolved points on
gMAM-approximated MLP using pure dynamics, and their evolu-
tions did not showmuch periodic behavior. This is because gMAM
only coarsely approximates a point on the periodic orbit (see the
discussion on gMAM in Section 3.2 and Fig. 6).

(iv) Finally, the four types of local MLPs obtained above are
compared in Fig. 14 in terms of action values. There is an optimal
shear strength c that achieves the most likely transition among
them.

6. Conclusion

This article studies how metastable transitions in nongradient
systems can differ from those in gradient systems, by investigating
MLPs that minimize Freidlin–Wentzell action functional. In non-
gradient systems, there can be hyperbolic periodic orbits that at-
tract on the separatrixmanifold. For a class of nongradient systems
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(a) Shear-indifferent MLP, obtained by up–down gMAMwith linear initial path.

(b) Shear-facilitated MLP, obtained by up–down gMAMwith elliptical initial path.

Fig. 12. Local MLPs through 1-nucleation horizontal fixed point. Each local MLP is illustrated by seven snapshots, uniformly distributed from reparameterized time 0 to 1;
the middle snapshot corresponds to the fixed point. κ = 0.01, c = 0.1.

(a) Shear-hindered MLP, obtained by up–down gMAM with linear initial path; intersection with the separatrix was given by p-String
method.

(b) Shear-hindered MLP, obtained by gMAMwith vertical initial path.

(c) Shear-hindered MLP, obtained by up–down gMAM with linear initial path; intersection with the separatrix was given by the point
on the periodic orbit (obtained by p-String method) closest to the gMAMMLP above.

Fig. 13. Local MLPs through the periodic orbit bifurcated from 1-nucleation vertical fixed point. Each local MLP is illustrated by seven snapshots, uniformly distributed from
reparameterized time 0 to 1; the middle snapshot corresponds to crossing point on the periodic orbit. κ = 0.01, c = 0.1.

named orthogonal-type, it is demonstrated theoretically and by
finite- and infinite-dimensional examples, that each such periodic
orbit is associated with infinitely many local minimizers of the
action functional, all of which have the same action characterized
by a barrier height, and the corresponding local MLPs are the
concatenations of two infinite-length heteroclinic orbits in twodif-
ferent deterministic dynamical systems. We also provided a non-
orthogonal nongradient example, in which local MLPs through
hyperbolic periodic orbit were numerically obtained. What con-
trasts the orthogonal case is the numerical observation of multiple
local action minima associated with a single separatrix crossing
location. Unfortunately, a theory for non-orthogonal systems is
still incomplete; our argument only suggests that there is an MLP
that crosses a hyperbolic attractor on the separatrix, but it remains
unproved whether any hyperbolic attractor on the separatrix cor-
responds to at least one local MLP.

Two numerical methods were proposed and used in these in-
vestigations. One is a variant of String method named p-String
method, which identifies hyperbolic periodic orbits in general
deterministic dynamical systems. The other is up–down gMAM
method, which improves gMAM in terms of both accuracy and
efficiency by utilizing an input of separatrix crossing location from,
for example, the p-String method.
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Fig. 14. Action values ofMLPs numerically obtained by gMAMas functions of c . Four
types of MLPs are: ‘Horizontal’—above case (ii)-1: through horizontal fixed point,
invariant in y, indifferent to shear; ‘Elliptical’—above case (ii)-2: through horizontal
fixed point, facilitated by shear; ‘Vertical’—above case (iii): through vertical fixed
point or its bifurcated periodic orbit, hindered by shear; ‘Uniform’—above case (i):
through u = 0 fixed point, indifferent to shear. κ = 0.01 and c samples from 0 to
0.4 with an increment 0.01.

Appendix

A.1. Brief review of string method

Consider a system

dX = −∇V (X)dt +
√
ϵdW ,

and two local minima of V , xa and xb. A Minimum Energy Path
(MEP) between xa and xb is a curve φ(α) parametrized by α that
connects them and satisfies

(∇V )⊥(φ(α)) = 0,∀α,

where (∇V )⊥ is the projection of ∇V orthogonal to φ, i.e.,

(∇V )⊥(φ(α)) := ∇V (φ(α)) −
⟨
∇V (φ(α)), τ̂ (α)

⟩
τ̂ (α),

with τ̂ (α) = φα(α)/∥φα(α)∥ being the unit tangent of φ.
String method [12] approximates an MEP by evolving a string

φ(α, t) in a fictitious time t , according to

φt = −∇V (φ)⊥ + λτ̂ ,

where λ = λ(α, t) is a Lagrange multiplier that ensures a con-
stant distance parameterization ∥φα∥α = 0. Simplified String
method [13] further simplifies the dynamics to

φt = −∇V (φ) + r τ̂ ,

where r again ensures constant distance.
Numerically, the string is discretized to n + 1 points φi(t) and

evolved by a splitting schemebased on alternating two substeps: at
each step, first each discrete point is evolved by the same timestep
using φ̇i = −∇V (φi), and then reparameterization is implemented
by redistributing points along the string via an interpolation. After
a numerically converged evolution, the string at the final step
approximates an MEP.

A.2. Brief review of geometrized minimum action method (gMAM)

gMAM [1,3,39] established Lemma 5 and proposed to seek
local MLP by optimizing the geometric action via a preconditioned
steepest-descent algorithm, which evolves a path X in a fictitious
time t according to

Xt = −λ
δŜ
δX
, with λ := ∥f ∥/∥X ′

∥.

Due to the fact that Ŝ does not depend on X ’s parameterization, a
constant distance parameterization (i.e. ∥X ′

∥
′
= 0) is maintained

so that the gradient descent dynamics remains well-conditioned.
The gradient can be computed by calculus of variations as

δŜ
δX

= −λX ′′
+ (∇f − ∇f T )X ′

+ λ−1(∇f )T f − λ′X ′.

To numerically simulate the gradient flow, gMAM alternates be-
tween substeps of evolution and interpolation, the latter for ensur-
ing the constant distance parameterization. Details can be found
in [1]. The same idea applies to SPDEs (see also [3]). We write the
two SPDE examples considered in this article ( Sections 3.4 and 3.5)
in a general (2+1)D form as

∂tφ = κ∆φ + f (φ) + g(y)∂xφ +
√
ϵη.

Its geometrized action is

Ŝ[φ] =

∫ 1

0

(√∫
T2

|φ′(s, z)|2dz

×

√∫
T2

|κ∆φ(s, z) + f (φ(s, z)) + g(y)∂xφ|
2dz

−

∫
T2
φ′(s, z)

(
κ∆φ(s, z) + f (φ(s, z)) + g(y)∂xφ

)
dz
)
ds, (15)

where z = (x, y) ∈ T2 is the space coordinate and prime indicates
partial derivative with respect to the reparameterized time s.

Calculus of variations computations lead to

δŜ
δφ

= −λ′φ′
− λφ′′

+
1
λ

(
κ2∆∆φ + 2κ f ′∆φ + κ f ′′

∇φ · ∇φ + ff ′

+ κg ′′(y)∂xφ + κ2g ′(y)∂xyφ − g(y)2∂xxφ
)
+ 2g(y)∂xφ′,

where f ′ and f ′′ denote ∂ f (φ)/∂φ and ∂2f (φ)/∂φ2 (here prime on
f does not mean time derivative), and λ(s) is defined by

λ =

√∫
T2 |κ∆φ(s, z) + f (φ(s, z)) + g(y)∂xφ|

2dz√∫
T2 |φ′(s, z)|2dz

.

The minimization is again performed by preconditioned gradient
descent dynamics

φt = −λ
δŜ
δφ

= λλ′φ′
+ λ2φ′′

− κ2∆∆φ − 2κ f ′∆φ − κ f ′′
∇φ · ∇φ − ff ′

− κg ′′(y)∂xφ − κ2g ′(y)∂xyφ + g(y)2∂xxφ − λ2g(y)∂xφ′

which is a PDE in 4-dimension (fictitious time t for optimization,
reparameterized physical time s, and space x and y). To numerical
evolve this dynamics, we use pseudospectral discretization for x
and y, and 2nd-order central difference for s (1st-order at bound-
aries). Time stepping in t is done by Strang splitting, where in
the first and third substeps the −κ2∆∆φ term is integrated by an
exponential solver for half step, and the second substep is a full step
Crank–Nicolson for the remaining system, where the λ2φ′′ term is
diffusion-like and treated implicitly, and the rest terms are time-
stepped explicitly.

A.3. Properties of the 1D-space SPDE

Proof of Proposition 1. Simple calculus of variations and integra-
tion by part using periodic boundary condition shows

δV =

∫ 1

0

(
−κuxxδu − u(1 − u2)δu

)
dx
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and⟨
δV
δu
, b
⟩

=

∫ 1

0
−(κuxx + u − u3)cux dx

= −c
∫ 1

0
κ

(
u2
x

2

)
x
+

(
u2

2

)
x
−

(
u4

4

)
x
dx = 0. □

Then we show that V [φ(·, t)] is a Lyapunov function of the
system without noise (note this proof extends to any orthogonal-
type nongradient system):

Corollary 1. Given a solution φ(x, t) of (11), we have
dV [φ(·, t)]

dt
≤ 0.

Equality occurs if and only if φ satisfies κφxx + φ − φ3
= 0.

Proof. By chain rule

dV [φ(·, t)]
dt

=

∫ 1

0

δV
δφ
φt dx =

⟨
δV
δφ
,−
δV
δφ

+ b
⟩

= −

δVδφ
2 ≤ 0.

Inequality becomes equality if and only if δV
δφ

= 0, i.e., κφxx + φ −

φ3
= 0. □

Now we prove the statements on fixed points and periodic
orbits.

Proof of Propositions 2 and 3. If u(x) is a fixed point of (11), it
needs to satisfy

κuxx + u − u3
+ cux = 0 (16)

with boundary condition u(x) = u(x + 1).
Assumewithout loss of generality that c ≥ 0, because there is a

1-to-1 correspondence between solutions of (16) with c = c0 and
c = −c0 via a coordinate change x ↦→ −x.

Writing q = u and p = dq/dx, and letting H(q, p) = κp2/2 −

(1 − q2)2/4, (16) can be rewritten as{
qx = p
κpx = −∂H/∂q − cp

and recognized as a mechanical system with dissipation.
There are three critical points of the potential energy U(q) =

−(1 − q2)2/4, namely q = 0, q = 1 and q = −1. Clearly, us(x) = 0,
u+(x) = −1 and u−(x) = 1 are solutions of (16), and they trivially
satisfy the boundary condition.

u+ = 1 and u= − 1 are stable, because they give zero value to
the non-negative Lyapunov function V [·], and Corollary 1 shows
they are the only global minimizers. On the other hand, us = 0
is unstable, because there are homogeneous states u(x) = ϵ and
u(x) = −ϵ in its arbitrarily small neighborhood that correspond to
smaller V values.

When c > 0, (16) is dissipative and H(q, p) always converges
to a local minimum of the potential energy U . Therefore, the only
solutions u(x) that satisfy the periodic boundary condition are the
constant solutions us, u+ and u−. They give the only three fixed
points in (11).

When c = 0, the fixed point satisfies

κuxx + u − u3
= 0, u(x) = u(x + 1). (17)

This can be viewed as a 1D nonlinear oscillator, whose phase por-
trait is illustrated in Fig. 15.Wenow count solutions that satisfy the
boundary condition, which means they have to be either constant
or periodic orbits with period 1/N : N ∈ Z+.

The energy in (17) is obviously conserved along any trajectory,
and therefore we can let E = H(q(t), p(t)). It is easy to see only
E ∈ [−1/4, 0] corresponds to a closed orbit.

Fig. 15. Phase portrait of Hamiltonian dynamics (17) with κ = 1.

Rewrite dq/dx = p as

dx =
1
p
dq =

√
κ

±
√
2E + (1 − q2)2/2

dq.

As can be seen in the phase portrait, a closed orbit at energy E first
goes from (ql, 0) to (qr , 0) and then goes back,where ql < 0, qr > 0,
and E = −(1 − q2l )

2/4 = −(1 − q2r )
2/4. The period of this orbit is

∆x = 2
∫ √

1−2
√

−E

−

√
1−2

√
−E

√
κ√

2E + (1 − q2)2/2
dq.

Although there is no closed form expression for this integral, it can
be shown that ∆x continuously deceases as E decreases from 0 to
−1/4.

Consider two extremes: E = 0 and E = −1/4. When E = 0,
the ‘periodic orbit’ is the union of two heteroclinic orbits linking
q = −1 and q = 1, and the ‘period’ is ∆x = ∞. When E = −1/4
(corresponding to q = 0, p = 0), the periodic orbit degenerates to
the fixed point q = 0. To study periodic orbits near this fixed point,
consider initial condition in an ϵ neighborhood of the origin, which
linearizes (17), and the solution is approximately harmonic, i.e.,

u = ϵ

(
a cos

x
√
κ

+ b sin
x

√
κ

)
+ o(ϵ).

Therefore, among all periodic orbits in (17), the smallest period
is 2π

√
κ near q = p = 0, and the period increases to ∞ at the

heteroclinic orbits.
Since [2π

√
κ,∞)

⋂
{1, 1/2, 1/3, . . .} is a finite set, only finitely

many of the solutions have period 1/N . 2π
√
κ ≤ 1 is necessary for

there to be at least one, and as κ decreases, the total amount will
be nondecreasing. When κ > 1/(2π )2, the solutions to (17) that
satisfy the boundary conditions are only constant u = −1, 0, 1. □

Proof of Proposition 4. Note if u(x) satisfies κuxx + u − u3
= 0,

then φ(x, t) := u(x + ct) solves φt = κφxx + φ − φ3
+ cφx. This is

because by chain rule,

− φt + κφxx + φ − φ3
+ cφx = −cu′(x + ct) + κu′′(x + ct)

+ u(x + ct) − u(x + ct)3

+ cu′(x + ct) = 0.

Since any non-constant fixed point of (11) with c = 0, ϵ = 0
satisfies κuxx + u − u3

= 0 and u(x) = u(x + 1), φ(x, t) solves (11)
with c ̸= 0, ϵ = 0 and satisfies φ(x, t) = φ(x, t + 1/c). Therefore,
it is a periodic orbit with 1/|c| period in t . □
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A.4. The triviality of an orthogonal decomposition of q̇ = p, ṗ = −q

Proposition 7. If a scalar field V and a vector field b satisfy
−∇V (q, p) + b(q, p) = (p,−q) and ∇V · b = 0, then V (q, p) ≡

constant.

Proof. Let x = (q, p). It is easy to see that V (x(t)) is a Lyapunov
function in

ẋ = −∇V (x) + b(x).

However, for any r ≥ 0, q2 + p2 = r2 is a periodic orbit in the
system, and therefore V must be constant on each of these periodic
orbits. Hence there exists a scalar function U(r) such that

V (q, p) = U(r).

Since ∇V · b = 0 is equivalent to ∇V · ((p,−q) + ∇V ) = 0, chain
rule leads to

U ′(r)

⎡⎢⎣
q
r
p
r

⎤⎥⎦ ·

⎡⎢⎣ p + U ′(r)
q
r

−q + U ′(r)
p
r

⎤⎥⎦ = 0,

and therefore [U ′(r)]2r = 0. This leads to U(r) ≡ constant, and
hence V (q, p) ≡ constant. □

A.5. Initial paths used in path evolutions for the sheared Allen–Cahn
system

Denote by n + 1 the number of points on a discrete path, with
φj being the jth point, 1 ≤ j ≤ n + 1. Here are initial paths used in
our path evolutions.

• ‘Linear’. Given any two points φa and φb, the path is given by

φj = φa
n + 1 − j

n
+ φb

j − 1
n
.

• ‘Horizontal’. This path corresponds to a non-optimal nucle-
ation in y direction between φ1(x, y) = −1 and φn+1(x, y) =

1. Points on this path are given by Gaussian in y with width
controlled by j. More specifically,

φj(x, y) = 2 exp
(

−
(0.5 − y)2

4/9(j/n)2

)
− 1

for 2 ≤ j ≤ n.
• ‘Double horizontal’. This path corresponds to two nu-

cleations in y direction between φ1(x, y) = −1 and
φn+1(x, y) = 1, obtained by stacking two ‘Horizontal’. More
specifically,

φj(x, y) = 2 exp
(

−
(0.5 − 2 · mod (y, 0.5))2

4/9(j/n)2

)
− 1

for 2 ≤ j ≤ n.
• ‘Elliptical’. This path corresponds to skewed prolate Gaus-

sians. More specifically,
φj(x, y)

= 2 exp
(

−
(y − x/16 − 15/32)2 + (y/16 + x − 17/32)2/16

4/9(j/n)2

)
− 1

for 2 ≤ j ≤ n.
• ‘Vertical’. ‘Horizontal’ with x and y swapped.
• ‘Double vertical’. ‘Vertical’ with x and y swapped.
• ‘Radial’. This path corresponds to a non-optimal nucle-

ation in
√
x2 + y2 direction between φ1(x, y) = −1 and

φn+1(x, y) = 1. More specifically,

φj(x, y) = 2 exp
(

−
(0.5 − x)2 + (0.5 − y)2

4/9(j/n)2

)
− 1

for 2 ≤ j ≤ n.

Note these specific function forms are not necessary, as long as
symmetries are broken in the same way.
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[59] P. Brunovskỳ, B. Fiedler, Connecting orbits in scalar reaction diffusion equa-
tions ii. the complete solution, J. Differential Equations 81 (1989) 106–135.

[60] J. Carr, R. Pego, Invariantmanifolds formetastable patterns inut = ϵ2uxx−f (u),
Proc. Roy. Soc. Edinburgh: Sect. A Math. 116 (1990) 133–160.

[61] X. Chen, Generation and propagation of interfaces for reaction–diffusion equa-
tions, J. Differential Equations 96 (1992) 116–141.

[62] P. De Mottoni, M. Schatzman, Geometrical evolution of developed interfaces,
Trans. Amer. Math. Soc. 347 (1995) 1533–1589.

[63] W.G. Faris, G. Jona-Lasinio, Large fluctuations for a nonlinear heat equation
with noise, J. Phys. A: Math. Gen. 15 (1982) 3025.

[64] J.B. Walsh, An Introduction To Stochastic Partial Differential Equations,
Springer, 1986.

[65] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge
University Press, 2008.

[66] M. Hairer, M.D. Ryser, H. Weber, Triviality of the 2D stochastic Allen-Cahn
equation, Electron. J. Probab. 17 (2012) 1–14.

[67] R.V. Kohn, F. Otto, M.G. Reznikoff, E. Vanden-Eijnden, Action minimization
and sharp-interface limits for the stochastic Allen-Cahn equation, Comm. Pure
Appl. Math. 60 (2007) 393–438.

[68] K. Lust, D. Roose, An adaptive newton–picard algorithm with subspace it-
eration for computing periodic solutions, SIAM J. Sci. Comput. 19 (1998)
1188–1209.

[69] R.L. Davidchack, Y.-C. Lai, Efficient algorithm for detecting unstable periodic
orbits in chaotic systems, Phys. Rev. E 60 (1999) 6172.

[70] J. Guckenheimer, B. Meloon, Computing periodic orbits and their bifurcations
with automatic differentiation, SIAM J. Sci. Comput. 22 (2000) 951–985.

[71] D.M. Ambrose, J. Wilkening, Computation of time-periodic solutions of the
benjamin–ono equation, J. Nonlinear Sci. 20 (2010) 277–308.

[72] À. Haro, M. Canadell, J.-L. Figueras, A. Luque, J.-M. Mondelo, The Parameteriza-
tion Method for Invariant Manifolds, Springer, 2016.

[73] A. Haro, R. de La Llave, A parameterization method for the computation of
invariant tori and their whiskers in quasi-periodic maps: explorations and
mechanisms for the breakdown of hyperbolicity, SIAM J. Appl. Dyn. Syst. 6
(2007) 142.

[74] D. Viswanath, The Lindstedt–Poincaré technique as an algorithm for comput-
ing periodic orbits, SIAM Rev. 43 (2001) 478–495.

[75] M.N. Vrahatis, An efficient method for locating and computing periodic orbits
of nonlinear mappings, J. Comput. Phys. 119 (1995) 105–119.

[76] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, second
ed., Springer, New York, 1998.

[77] P. Hänggi, P. Talkner, M. Borkovec, Reaction-rate theory: fifty years after
Kramers, Rev. Modern Phys. 62 (1990) 251.

http://refhub.elsevier.com/S0167-2789(16)30460-2/sb33
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb33
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb33
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb34
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb34
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb34
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb35
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb35
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb35
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb35
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb35
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb36
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb36
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb36
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb36
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb36
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb37
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb37
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb37
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb38
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb38
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb38
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb39
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb39
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb39
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb40
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb40
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb40
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb41
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb41
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb41
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb42
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb42
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb42
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb42
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb42
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb43
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb43
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb43
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb43
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb43
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb44
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb44
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb44
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb45
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb45
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb45
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb45
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb45
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb46
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb46
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb46
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb47
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb47
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb47
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb48
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb48
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb48
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb48
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb48
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb49
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb49
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb49
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb50
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb50
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb50
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb50
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb50
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb51
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb51
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb51
http://cmvl.cs.concordia.ca
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb53
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb53
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb53
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb53
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb53
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb54
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb54
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb54
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb55
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb55
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb55
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb55
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb55
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb56
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb56
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb56
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb57
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb57
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb57
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb58
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb58
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb58
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb59
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb59
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb59
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb60
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb60
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb60
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb61
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb61
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb61
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb62
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb62
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb62
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb63
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb63
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb63
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb64
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb64
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb64
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb65
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb65
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb65
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb66
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb66
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb66
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb67
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb67
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb67
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb67
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb67
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb68
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb68
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb68
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb68
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb68
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb69
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb69
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb69
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb70
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb70
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb70
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb71
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb71
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb71
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb72
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb72
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb72
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb73
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb73
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb73
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb73
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb73
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb73
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb73
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb74
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb74
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb74
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb75
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb75
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb75
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb76
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb76
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb76
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb77
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb77
http://refhub.elsevier.com/S0167-2789(16)30460-2/sb77

	Hyperbolic periodic orbits in nongradient systems and small-noise-induced metastable transitions
	Introduction and main results
	Nongradient systems of orthogonal-type
	The orthogonal-type system
	The maximum likelihood transition
	Numerical challenges in computing the heteroclinic orbits
	Generality of orthogonal-type systems

	Transitions in nongradient systems: case studies
	2D SDE system
	3D SDE system (rotationally-symmetric)
	3D SDE system (no rotational symmetry)
	1D-space advection–diffusion–reaction SPDE
	2D-space advection–diffusion–reaction SPDE

	Hyperbolic periodic orbit identification in general nongradient systems by p-string method
	The method
	The rationale
	Example results

	Identified periodic orbit helps understand metastable transitions
	Transition rate
	Transition path and its numerical computation
	MLPs in a non-orthogonal-type system (12)

	Conclusion
	Acknowledgments
	Appendix
	Brief review of string method
	Brief review of geometrized minimum action method (gMAM)
	Properties of the 1D-space SPDE
	The triviality of an orthogonal decomposition of q=p,p=-q
	Initial paths used in path evolutions for the sheared Allen–Cahn system

	References


