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We present a data-driven method for separating complex, multiscale systems into their constituent timescale
components using a recursive implementation of dynamic mode decomposition (DMD). Local linear models
are built from windowed subsets of the data, and dominant timescales are discovered using spectral clustering
on their eigenvalues. This approach produces time series data for each identified component, which sum to a
faithful reconstruction of the input signal. It differs from most other methods in the field of multiresolution
analysis (MRA) in that it (1) accounts for spatial and temporal coherencies simultaneously, making it more
robust to scale overlap between components, and (2) yields a closed-form expression for local dynamics at each
scale, which can be used for short-term prediction of any or all components. Our technique is an extension of
multi-resolution dynamic mode decomposition (mrDMD), generalized to treat a broader variety of multiscale
systems and more faithfully reconstruct their isolated components. In this paper we present an overview of our
algorithm and its results on two example physical systems, and briefly discuss some advantages and potential
forecasting applications for the technique.
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I. INTRODUCTION

Physical systems whose dynamics evolve on a broad range
of scales simultaneously (spatial or temporal) have been the
subject of much study in the development of diagnostic and
modeling tools. These multiscale systems are ubiquitous in
physics, so there is a great deal of practical interest in meth-
ods which are accommodating to scale disparities spanning
orders of magnitude. Of particular note are those systems
whose behavior can be decomposed into a finite number of
discrete scales, as this lends an additional structural constraint
which can be exploited in modeling. For instance, atmospheric
climate data and/or simulations can be characterized by de-
veloping separate models for variations on the order of one
day and one year, respectively, and then coupling them. Math-
ematical methods for exploiting these distinct and disparate
scales can greatly simplify the problem of state estimation
and forecasting. We extend the method of dynamic mode
decomposition (DMD) to characterize multiscale physics and
their coupling dynamics, showing that such a data-driven
strategy provides a viable and adaptive strategy for diagnostics
and dynamical modeling.

The task of identifying distinct multiscale temporal physics
directly from data in a way that allows the signal to
be decomposed into its constituent scale-separated compo-
nents is a subject of ongoing investigation. Well-established
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methods use Fourier- and wavelet-based techniques to sepa-
rate coarse-grain and fine-grain features in space or time (but
generally not both at once) [1–3]. These approaches, though
often useful, are purely diagnostic. They do not directly
produce dynamical models from data. Moreover, their focus
on exclusively temporal (or exclusively spatial) coherencies
limits their utility as precursors to model discovery for state
estimation and forecasting. Regardless, such techniques form
the mathematical basis of multiresolution analysis (MRA)
[4,5] which provides a rigorous foundation for multiscale
decomposition.

To address the dynamical limitations of MRA, researchers
have put forth a number of equation-free, data-driven mod-
eling techniques tailored to multiscale spatiotemporal sys-
tems. Indeed, there is a significant body of research focused
on modeling multiscale systems and linking scales: notably
the heterogeneous multiscale modeling framework, equation-
free methods, and structure preserving versions known as
FLAVORs [6–9]. Additional work has focused on testing
for the presence of multiscale dynamics so that analyzing
and simulating multiscale systems is more computationally
efficient [10,11]. Many of the same issues that make modeling
multiscale systems difficult can also present challenges for
model discovery and system identification [12]. This moti-
vates the development of specialized methods for performing
model discovery on problems with multiple timescales, taking
into account the unique properties of multiscale systems.
A purely data-driven approach was recently introduced by
Kutz et al. [13] which recursively applies DMD to build
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closed-form linear models to approximate dynamics at all
scales simultaneously. DMD was first proposed as a decom-
positional technique for complex fluid flows [14–16], but it
has since been adopted more widely as a method for finite
approximation of the Koopman operator in a large variety
of data sets [17]. DMD produces a linearized model for a
(generically nonlinear) data set. It can be thought of as a
best-fit approximation of a signal generated by a linear com-
bination of static spatial modes whose time-varying weights
follow complex exponential trajectories of oscillation, growth,
or decay. The technique proposed by Kutz et al., dubbed multi-
resolution dynamic mode decomposition (mrDMD), builds on
MRA wavelet techniques by recursively subdividing the data
set to access different regimes of the time-frequency domain.
The length of the window over which DMD is applied is
repeatedly halved, and the most salient components of each
iteration are interpreted as a simplified local model for the
dynamics at that scale.

Decomposition of a multiscale signal can also be cast as
a blind source separation (BSS) problem by treating each
timescale as an independent source contributing to the com-
posite signal being measured. Typical methods for BSS in-
clude principal component analysis (PCA) and independent
component analysis (ICA). A comparison of these methods
to DMD is presented in Ref. [18]. When the source signals
occupy fairly narrow frequency bands, as is assumed to be the
case in this paper, DMD is shown to drastically outperform
the other techniques. For this reason it is an obvious candidate
for the decompositional method used in the sliding window
framework we present here.

This paper aims to extend and generalize the mrDMD
algorithm. The essential insight of mrDMD is the sensitiv-
ity of results to duration of the input signal: Given a time
series containing dynamics on widely varying timescales,
the eigenfrequencies obtained by DMD could reflect any of
these timescales depending on the duration and resolution of
sampling. The window lengths tested in mrDMD are lim-
ited to some base time span and power-of-two subdivisions
thereof. This can be problematic in systems whose multiscale
frequency content does not follow that pattern—the ability
of DMD to robustly identify a persistent component at a
particular timescale turns out to be fairly sensitive to window
size. The simple halving scheme could easily fail to resolve
a component whose characteristic timescale falls between
those given by powers of two. We solve this problem by
(1) implementing a protocol using sliding, overlapping win-
dows on the data set to generate spectral bands of DMD eigen-
values, and (2) developing a diagnostic to use the narrowness
of these bands to tune the window size for optimal resolution
of a particular scale component. The method we propose here
effectively identifies and isolates the constituent timescale
components of two test systems. In addition to providing
diagnostic information on the frequency content of a signal,
it produces (1) faithful reconstructions of each constituent
component with minimal cross-pollution between them,
(2) closed-form expressions for these reconstructions which
can be used for low-cost forecasting at any timescale, and
(3) statistics on the parameters of windowed DMD models,
whose distributions can be sampled for stochastic ensemble
forecasting.

The method we present bears some similarity to the fre-
quency map analysis (FMA) technique often used in analysis
of time series generated by nonlinear dynamics [19]. Both
seek to identify dominant frequencies in a multivariate signal
and fit the data to a linear combination of sinusoids at these
frequencies. However, FMA does this with a static basis of
spatial modes (corresponding to the canonical coordinates of
Hamiltonian mechanics), whereas our approach allows spatial
modes to vary over time using a sliding-window framework.
This makes it more versatile in its ability to reconstruct
a wide variety of input signals. Moreover, FMA typically
restricts its analysis to real-valued frequencies which produce
purely sinusoidal dynamics. Our method can be similarly con-
strained, but in general it admits complex-valued frequencies
which also allow for exponential growth or decay in its local
windowed reconstructions.

The rest of the paper is outlined as follows: In Sec. II
we present an overview of the theory and implementation
of DMD. In Sec. III we outline the protocol for our sliding-
window scale separation technique and demonstrate it on a
simple toy model. In Sec. IV we briefly discuss the advantages
of our method over traditional temporal filtering tools. A
fully-fledged recursive, many-scale example using data from
a three-body planetary system is presented in Sec. V. The
paper is concluded in Sec. VII with a discussion of theoret-
ical context for our approach and possibilities for its future
application.

II. BACKGROUND: DYNAMIC MODE DECOMPOSITION

Dynamic mode decomposition (DMD) seeks a best-fit
linear model for a time-series data set. Given some collection
of sequential measurements x j ∈ RN for j = 1, . . . , M, DMD
solves for an operator A which satisfies, to closest approxima-
tion, x j+1 ≈ Ax j for all snapshots j. This can be computed
by separating the data X ∈ CN×M (where N is the dimension
of the measurement space and M is the number of data points
measured) into two sequential matrices X1 ∈ CN×(M−1) and
X2 ∈ CN×(M−1):

X1 =

⎡
⎢⎣

| | |
x1 x2 · · · xM−1

| | |

⎤
⎥⎦,

X2 =

⎡
⎢⎣

| | |
x2 x3 · · · xM

| | |

⎤
⎥⎦. (1)

The operator A is then simply the matrix which minimizes
the Frobenius norm ||X2 − AX1||F so that X2 ≈ AX1. This is
a straightforward computation, but can become prohibitively
expensive for large state dimension N . Indeed, the exact DMD
algorithm [17] approximates the operator as A = X2X†

1 where
† denotes the Moore-Penrose pseudoinverse (least-square re-
gression). It is therefore common to first project the data into a
lower-dimensional space using Singular Value Decomposition
(SVD). For a more detailed overview of the method, see Tu
et al. [17].

A well-known deficiency of the exact DMD approach is the
adverse effect of the measurement errors (sensor noise) on its
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performance [20–22]. Previous studies indicate that presence
of sensor noise can negatively influence the computation of
eigenvalues and they would be biased, presenting a serious
problem for studies that rely upon exact DMD to distinguish
between stable and unstable modes. This is primarily because
exact DMD treats data sequentially rather than as a whole, and
thus favors the forward time direction. Recent studies have ad-
dressed this issue and proposed several techniques to mitigate
this problem through employing various forms of ensemble
averaging, cross-validation, windowing, and rank reduction.
However, Hemati et al. [21] showed that the resulting analysis
from the aforementioned techniques are subject to systematic
bias errors when the measurements are inexact due to sensor
noise or other effects.

In this paper, we employ a variation on the standard DMD
algorithm known as Optimized DMD, which seeks to address
these shortcomings. Optimized DMD recasts the minimiza-
tion problem outlined above as a task of exponential curve-
fitting making use of the variable projection method. This
comes at the price of convexity, but yields a decomposition
which much more faithfully reconstructs the input data series.
A full exposition of the Optimized DMD algorithm and its
advantages is presented in Ashkam and Kutz [20].

III. METHODS: TIMESCALE SEPARATION USING DMD

The decomposition method introduced in this paper con-
sists of the following steps:

(1) A sliding-window implementation of DMD to extract
a large number of (complex) frequencies ωk

j associated with
spatially coherent dynamics in the input time series.

(2) A clustering algorithm to identify the most highly
represented frequencies in the population of {|ωk

j |}. These
clusters represent the multiple timescale regimes present in
the input data.

(3) Retroactive labeling of modal components of each
windowed DMD identified in Step 1 with labeling based on
the cluster assignments of their associated frequencies.

(4) For each distinct scale regime identified in Step 2, a
separate DMD reconstruction is produced by summing over
the components assigned to that cluster. These reconstructions
are produced separately for each iteration of the sliding-
window DMD from Step 1.

(5) A single global reconstruction is produced for each
timescale regime by combining weighted contributions from
each windowed reconstruction.

Note that Steps 1–3 are offline computations. Having car-
ried them out on a representative data set for a given system,
the clustering results can be used to label new data from the
same system.

A. A simple toy model

To introduce this decomposition method, we make use
of a simple system with nonlinear dynamics on two distinct
timescales. The model is given by the equations

v̇1 = v2, v̇2 = −w2
1v

3
1,

ẇ1 = w2, ẇ2 = −ε−1w1 − δ−1w3
1. (2)

The parameters which set the timescale separation were as-
signed the values δ = 0.25 and ε = 0.01, respectively. The
system is initialized at t = 0 in the state (v1, v2,w1,w2) =
(0, 0.5, 0, 0.5). Taken alone, the w variables (i.e., the “fast
scale”) form an undamped Duffing oscillator in which the
cubic nonlinearity term can be considered a small perturbation
from simple harmonic motion. The v variables (representing
the “slow scale”) also take the form of a cubic oscillator (sans
linear term), but with a coefficient (w2

1) which is dependent on
the state of the w variables.

This construction separates the fast and slow dynamics
for the sake of interpretability. Because no such separation
is guaranteed in measurements made on a real multiscale
physical system, we take the additional step of applying a
random linear mixing to the above coordinates:⎡

⎢⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎥⎦ = Q

⎡
⎢⎢⎢⎣

v1

v2

w1

w2

⎤
⎥⎥⎥⎦, (3)

where Q is a randomly generated 4 × 4 orthogonal matrix.
This system is numerically integrated (using Matlab’s ode45
solver) for a duration of 48 time units with a sampling interval
of �t = 4 × 10−4. The results are aggregated into a data
matrix X ∈ CN×M where N = 4 and M = 120 000.

B. Sliding window DMD

The sliding window approach takes advantage of DMD’s
sensitivity to the duration and sampling rate of the time series
input it receives. Consider an N-variable system measured
over M time points. An application of DMD to the full data
matrix X would identify a frequency spectrum that would
likely look quite different from that of the same algorithm
applied to a subset X̄ ∈ CN×W , (W � M). For the purposes
of this investigation, the “correct” sample length is defined by
the multiscale properties of the data: it must be long enough
to capture variations on the slowest scale, but not so long as
to fail to resolve the fastest scale. In the example model, the
sample length TW that most cleanly separated the two distinct
timescales was TW ≈ 2 Tfast and TW ≈ Tslow/20 (the approxi-
mate periods of oscillation associated with the fast-scale and
slow-scale dynamics, respectively). This is illustrated in Fig. 1
(though the width of the window drawn has been increased
slightly for visual clarity). The step size for the foreward
motion of the window is chosen to be much smaller than the
width of the window (about 4%) so that any given time point
is contained by a large number of windows.

DMD approximates the dynamics contained in each win-
dow with a linear operator. The best-fit reconstruction of
the windowed data can then be expressed in the standard
form for solutions to a first-order linear system, using the
eigendecomposition of that operator:

x̄k (t ) =
r∑
j

φk
je

iωk
j t bk

j + ck . (4)

Here k is used to index the steps of the sliding window [i.e.,
x̄k (t ) is the time series contained by the kth window position].
j indexes the eigenvalues (ω) and eigenvectors (φ) of the
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FIG. 1. Sliding a window filter across a longer time-series data
set. For each step of the window’s movement, a new DMD result is
obtained. Note that the width of the window is such that it contains
multiple complete oscillations of the fast scale but only a fraction of
a period of the slow scale.

linear DMD operator (numbered from 1 to r for a rank-r
decomposition). ck denotes the (constant) mean of the input
data, which must be reintroduced only if it was subtracted off
before applying the DMD algorithm.

Note that while the form presented in Eq. (4) is manifestly
complex, applying DMD to a real-valued input signal leads
it to identify oscillatory modes in complex conjugate pairs
whose imaginary components cancel each other out in the
reconstruction process. In the discussion that follows, all x̄k (t )
can be taken to be real.

C. Frequency clustering

The spectral results of the sliding-window DMD procedure
are then clustered to discover their dominant frequency con-
tent. Concatenating the set of all |ωk

j |2 into a single vector,
cluster centroids are obtained using the k-medians algorithm
[23] (i.e., k-means using an L1 distance metric to limit the
influence of outliers). The choice to cluster in |ωk

j |2 rather
than |ωk

j | has the effect of inflating the separation of higher
frequencies and compressing that of lower frequencies. For
this example, this has no practical effect. In the second half of
this paper, however, we introduce a recursion method which
uses multiple clustering iterations working sequentially from
the fastest timescales to the slowest. In this case, improved
differentiation between higher frequencies is an asset, and
the compression of the lower frequencies is inconsequential
because they can simply be dealt with on the next iteration.

Plotted in Fig. 2 are the spectra obtained by applying DMD
to each windowed subset of the sample data. The multiscale
structure is immediately obvious: there are two strong bands
at |ω|2 ≈ 100 and |ω|2 ≈ 1. Although there are a number of
outliers from these dominant bands (particularly in regions
where the slow-scale dynamics are relatively flat), the full set

FIG. 2. Spectra of the (modulus squared) frequencies obtained
by the sliding-window DMD procedure. Frequencies are plotted at
the midpoints of the windows from which they were computed.
Colors denote the cluster labels assigned to each point retroactively.

of {|ωk
j |2} is unambiguously peaked about two centroids (de-

picted in Fig. 3). Using the clustering results, we retroactively
label each frequency (and, by association, each windowed
DMD mode) based on its k-medians categorization.

A brief digression regarding clustering parametrization:
k-medians requires that the number of clusters be supplied
a priori. In the above case the choice of k = 2 seemed quite
obvious from the band structure of Fig. 2. But the window
size was specifically tuned to be sensitive to the fast-scale
dynamics at |ω|2 ≈ 100 (as described in Sec. III B). If there
had been a third, even slower timescale (e.g., at |ω|2 ≈ 0.01),
it would have gone entirely unnoticed—fully subsumed by
Cluster #1—resulting in an incomplete separation of scales.

FIG. 3. Histogram of all |ωk
j |2 with the k-medians cluster cen-

troids overlaid in color. Note that the outliers visible in Fig. 2 are
vastly outnumbered by in-band data points.
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FIG. 4. DMD reconstructions x̄k (t ) plotted over input data x(t )
for four nonoverlapping windows (delineated by dotted lines).

This apparent failure is resolved by the recursion method
which is outlined in the second half of this paper. In the
meantime, we simply wish to remark that for any system with
persistent dynamics on multiple, discrete timescales, each of
these scale components can be resolved into a clean frequency
band with an appropriate choice of DMD window length.
Thus, for a given window size, choosing the number of clus-
ters for k-medians can be easily accomplished by visual in-
spection or using the statistical cluster ennumeration method
of your choice. Fully isolating all timescale components may
require multiple clusterings at multiple window lengths (see
Sec. V B), but the choice of k for each of these will be
independent and greatly simplified by a well-delineated band
structure.

D. Scale-separated reconstruction

1. Global reconstruction from windowed results

Each windowed dynamic mode decomposition admits a
linearized reconstruction of the signal, given in Eq. (4). The
reconstruction x̄k (t ) (green) is overlaid on the original data
xk (t ) (black) in Fig. 4. Results are only plotted for four non-
overlapping windows (demarcated by vertical dotted lines) to
avoid visual clutter:

x̄global(t ) =
∑

k e−(t−μk )2/σ 2
x̄k (t )∑

k e−(t−μk )2/σ 2 . (5)

It is evident from the plot that the reconstructions tend to
diverge from the true signal near the edges of each window.
Converting an ensemble of windowed reconstructions into a
single global reconstruction calls for a linear combination of
results from all windows that contain a given point. But clearly
they should not be weighted equally—to estimate the system
state at t = 12, for example, the result from the window
centered on t = 12 is more likely to be accurate than the result

0 10 20 30

Time

-6

-4

-2

0

2

4

Input Data
Global Reconstruction

FIG. 5. Global DMD reconstruction x̄global(t ) plotted over the
input data x(t ).

from a window whose boundary lies near t = 12. To address
this issue, we weight each windowed result with a Gaussian
centered on the midpoint of the window μk and with standard
deviation σ equal to one eighth of the window’s width [see
Eq. (5)]. The denominator simply acts as a normalization
factor ensuring unit net contribution to every time point. The
result of this method, plotted in Fig. 5, hews closely to the
ground truth signal for the full duration of the simulation.

2. Separation of timescales

Having labeled the individual modes according to the
clustering results, it is straightforward to separate this sum-
mation to obtain separate reconstructions for each identified
timescale:

x̄k
slow(t ) =

r∑
i∈{slow}

φk
je

iωk
j t bk

j, x̄k
fast(t ) =

r∑
i∈{fast}

φk
je

iωk
j t bk

j .

(6)

In the same fashion, Eq. (5) can be separated to produce fast-
and slow-scale global reconstructions (plotted in Fig. 6). This
result has a number of desirable properties:

(1) Fidelity: The separated reconstructions sum to a very
close approximation of the original time series (Fig. 5).

(2) Excellent timescale separation: There is very little
mixing of frequency content between the identified regimes.
Plots of the signals’ power spectra (Fig. 7) show that the
separated reconstructions closely mirror the spectral content
of the input signal near their respective peaks, and they
contribute very little elsewhere.

(3) Spatial interpretability: Unlike other frequency fil-
tering approaches, sliding-window DMD identifies spatial
modes corresponding to dynamics of a given frequency.
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FIG. 6. Scale separated reconstructions x̄global
slow (t ) (blue) and

x̄global
fast (t ) (red) plotted over the input data x(t ) (black).

Concatenating the results from all windowed decompositions,
we can construct time series of (complex) mode vectors
which are already labeled by timescale category using the
clustering results. Identifying patterns in the evolution of these
modes presents a promising approach for model-building or
forecasting.

(4) Closed analytic form: The reconstructions x̄global
slow (t )

and x̄global
fast (t ) are simply weighted sums of exponentials.

They therefore represent models for scale-separated variables
whose values can be computed directly for arbitrary t (without
need for any iterative integration scheme).

These properties make this decomposition method a pow-
erful tool for data-driven analyses of systems with multiscale
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FIG. 7. Power spectra of the input signal (black) and fast- and
slow-scale reconstructions (red and blue, respectively). The four
variables of each signal are summed to compute frequency content.

dynamics, with potential for application toward a variety of
modeling and forecasting tasks.

IV. SCALE SEPARATION PERFORMANCE

Given the task of separating out timescale regimes from
a multiscale signal, one standard and well-known approach
is Fourier filtering. Peaks in the power spectrum could be
used to identify the constituent frequencies, and each com-
ponent could then be isolated using an appropriately-designed
bandpass filter. This method differs from the one presented
in this paper in that the former identifies only temporal co-
herencies in the signal, whereas the latter incorporates spatial
coherencies as well. We here present a brief example of a case
in which the sliding-window DMD technique outperforms
Fourier filtering.

Two separate signals with different characteristic
timescales are generated using two simple models:

FitzHugh-Nagumo

v̇ = v − 1

3
v3 − w + 0.65

ẇ = 1

τ1
(v + 0.7 − 0.8w)

Unforced Duffing
ṗ = q

q̇ = − 1

τ2
(p + p3)

(7)

Characteristic timescales are set to τ1 = 2 and τ2 = 0.2, a
factor of 10 apart. The FitzHugh-Nagumo model, used as a
simple model for biological neuron dynamics, spikes sharply
at intervals determined by its characteristic timescale. The
Duffing model, however, is a simple nonlinear oscillator
whose dynamics resemble a distorted sinusoid. Therefore,
despite the disparity between τ1 and τ2, the “slow” component
periodically acquires a rate of change comparable to that of
the “fast” component. A combined signal x is generated from
these by a randomized linear mapping into R4:

x = A ·
[
v

p

]
, (8)

where A is a 4 × 2 Gaussian-random orthonormal matrix.
Signal separation is carried out using a simple Fourier

filtering approach and the sliding-window DMD method. For
the Fourier processing, we use Matlab’s built-in low- and
high-pass filter functions with passband frequencies of 0.04
and 0.15 Hz, respectively. Results are plotted in Fig. 8.

Note that while the sliding-window DMD approach clearly
performs better, neither method’s reconstruction conforms
perfectly to the ground truth (plotted underneath in black).
Disambiguating truly overlapping scales without error is a
highly nontrivial problem, beyond the scope of this paper. We
present this result as evidence that sliding-window DMD is
at least superior to purely-temporal methods in the case of a
problem with nearly overlapping scales, e.g., closely spaced
frequencies or nonlinear oscillations with spiking behavior.

It is also worth commenting that the data requirements for
this method (i.e., duration and frequency of sampling) are
at most only slightly greater than those for a Fourier-based
decomposition. From an information theoretic perspective,
DMD is subject to the same sampling rate restriction that
applies to discrete-time Fourier analysis, i.e., the Nyquist
criterion that sampling frequency must be greater than twice
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FIG. 8. Comparison of two scale separation techniques. The
measurement signal (top) is constructed from two components,
generated by the FitzHugh-Nagumo (center) and Duffing (bottom)
models. The ground-truth signal separation is plotted in black, with
the results of the two data-driven methods overlaid in color. The
sliding-window DMD approach is much more successful in recov-
ering the true components.

the highest frequency present in the signal. The lower bound
on sampling duration is less strictly defined, but qualitatively
it should of course be long enough to capture dynamical
evolution of the lowest-frequency content of the signal. Our
method introduces the additional requirement that there be
enough distinct positions for the sliding window to obtain
a sufficient set of frequency points for clustering. Windows
can overlap with one another though, so this would (at most)
perhaps double the requisite sampling duration relative to that
of Fourier decomposition.

V. APPLICATION: A THREE-BODY PLANETARY SYSTEM

A. Multiscale properties of nearly Keplerian orbits

In this section we present an application of our decom-
position technique to a real physical system with multiscale

FIG. 9. Histogram of frequency results of sliding window DMD
on the three-body planetary system. k-medians cluster centroids (k =
3) are overlaid in color.

properties. We consider the case of three bodies interacting
gravitationally in bounded orbits, with relative masses com-
parable to those of Jupiter, Saturn, and the Sun. Because the
Sun is larger than the planets by several orders of magnitude,
the system resembles two fairly stable elliptical orbits which
interact weakly with one another. This suggests the presence
of at least three well separated timescales in the dynamics: two
“fast” frequencies corresponding to the planetary orbits, and
one “slow” regime capturing the evolution of the orbits over
much longer durations (which may itself have a multiscale
makeup).

B. Recursive application and results

Data was generated for the three-body planetary system
using a 4th-order symplectic integrator in Cartesian coordi-
nates over a time span of 1 000 000 years. Applying the same
sliding-window DMD procedure outlined in the previous sec-
tion (window size ∼600 years), the frequency content very
cleanly separated into the three expected regimes (Fig. 9).

Here we observe a key limitation of the sliding-window
DMD approach as it has been presented thus far. The tech-
nique is sensitive to the chosen window duration, and data
spanning 600 years simply does not contain sufficient infor-
mation to characterize processes taking place over many mil-
lennia. Dynamics unfolding on a scale of 10 000 years would
be indistinguishable from those unfolding over 100 000 years:
both would just appear as a constant-valued background.
While the window size used here does an excellent job of
separating out the orbital frequencies of the two planets, it
relegates everything taking place on timescales longer than
those to a single “slow” regime. Zooming out on Fig. 10 to
see the evolution of this component, it is evident that it itself
constitutes a rich multiscale signal with nontrivially complex
dynamics (Fig. 11).
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FIG. 10. Scale-separated reconstructions of three components
(color) overlaid on the Cartesian input data (black). Note that for the
short domain plotted (150 years), the slow-scale component in blue
looks like a constant.

To better characterize these dynamics, we recursively reap-
ply the sliding-window DMD approach to identify and isolate
signals present in this slow component at different timescales.
The methodology is identical to that of the first iteration,
but now uses a window of length ∼4 600 years. Repeating
this process with successively longer windows, we obtain a
decomposition of the original data into five distinct timescale
components. These components are plotted separately in
Fig. 12. The full reconstruction obtained by summing them
is plotted against the input data in Fig. 13. It successfully
captures the true dynamics across all timescales.
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x
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FIG. 11. The isolated slow-scale component obtained by the first
pass of sliding-window DMD on the three-body planetary system.
Plotted in blue as Component 1 in Fig. 10, the full scope of its
dynamics is revealed over this longer time domain. The multiscale
behavior evident within this single component motivates our recur-
sive approach to scale separation.

FIG. 12. Scale-separated reconstructions obtained from four re-
cursive applications of the sliding-window DMD procedure to the
three-body planetary system. Dotted lines are used to indicate the
relative timescales between each successive recursion. Only the x
coordinates are plotted. Solid lines denote xJupiter and dot-dashed lines
denote xSaturn.

C. Physical interpretation of results

We chose this example in part because it is a well-studied
system with a known set of scale-separated parameters: the six
Keplerian Orbital Elements provide the minimum information
necessary to unambiguously define a (two-body) orbit. For
each planet, we compute these quantities over the duration of
the simulation: eccentricity (e), semimajor axis (a), inclina-
tion (i), longitude of ascending node (�), argument of periap-
sis (ω), and true anomaly (θ ). The multiscale properties of the
planetary orbits can be observed by plotting these elements
over different timescales. Figure 14 suggests three distinct
scale regimes: θ and a vary at a timescale corresponding to
the planetary year, �, e, and i oscillate at some precessional
frequency with a period of about 53 000 years, and the outer
envelope of sin(ω) has a period of over 300 000 years.

While the DMD components we have identified (Fig. 12)
do not all correspond precisely to the dominant frequencies
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FIG. 13. The full reconstruction to the three-body planetary sys-
tem obtained by summing the scale-separated components (xJupiter

in solid green, xSaturn in dot-dashed green) plotted over the original
simulation data (black). Each plot here contains the same result, visu-
alized over progressively longer timespans. In the last two plots, only
the upper-bound envelope has been plotted for ease of visualization.
The final plot shows moving averages to show the conformity even
over the longest timescales.

of these elements, they mostly fall neatly into the same three
regimes. Like θ , components 1 and 2 have periods correspond-
ing to the revolutions of the two planets. Components 4 and 5
have periods of 47 000 and 383 000 years, respectively, which
fall neatly into the two slowest regimes of the orbital elements.
Physically, these oscillations seem to relate to the eccentricity
cycles of the planets, whose periods have been estimated from
numerical models to be 45 900 years (Saturn) and 305 000
years (Jupiter) [24]. The discrepancy between these reported
values and those obtained from our simulation likely results
from the tertiary effects of other planets and moons in the solar
system (which were omitted from our model).

The only DMD component that is not closely matched
to any of the orbital elements is the third, with a period
of 107 years. This may represent some minor resonance
phenomenon of the planetary revolution (it is almost exactly
9 Jovian years), but its specific origin is not clear. In any case

FIG. 14. Keplerian orbital elements for the orbit of Jupiter, com-
puted from the Cartesian simulation data of the three-body planetary
system. The three plots show the same data over three distinct
timescales.

it is not a dominant effect; this component has the smallest
amplitude of all those identified and it could be omitted
entirely without dramatically affecting the full reconstruction.

VI. MULTISCALE FORECASTING

Finally, we present a brief example of how the sliding-
window DMD approach might be put to practical use. While
the decomposition process can be somewhat costly in com-
putational overhead, the execution of the resulting dynamical
model is quite efficient (it is simply a closed-form sum of
complex exponentials which can be evaluated at arbitrary t).
The cost-benefit assessment therefore favors applications in
which many calls are made to the predictive model. It is thus
quite a natural fit to explore the use of this technique as a
precursor to ensemble Kalman filtering (EnKF). EnKF is a
well-established data assimilation technique that integrates
measurement data with an ensemble of modeled forecasts
[25]. For many models, this ensemble must be built by
stochastically perturbing the parameters of some governing
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FIG. 15. Ensemble componentwise forecasts from the sliding-
window DMD model on the three-body planetary system. The dotted
vertical lines represent the “current time”; everything to their right
is the forecasted trajectory. At each scale, the unperturbed DMD
forecast (black) is overlaid by an ensemble of predictions generated
by sampling bk

j , φk
j , and ωk

j according to their statistics in the

preceding windowed iterations (constraining all φk
j to maintain unit

length). Note that these trajectories are all nearly identical in the
fast-scale components, where the variance of DMD parameters is
minimal.

differential equation and then numerically integrating out to
the target time. With a DMD-based model, however, no inte-
gration is necessary. Perturbations can be applied directly to
the model parameters bk

j , φ
k
j , and ωk

j according to distributions
obtained from the spread of those values over all windowed
iterations. A very large ensemble could therefore be built quite
efficiently, which would be of particular use for online EnKF.
A sample of such an ensemble is plotted componentwise in
Fig. 15.

VII. DISCUSSION

We have developed a data-driven method for separating
complex, multiscale systems into their constituent timescale

components using a recursive implementation of dynamic
mode decomposition (DMD). The method provides a robust
mathematical architecture for regressing to a hierarchy of
linear models approximating the nonlinear dynamics at dif-
ferent temporal scales. It even applies to multiscale dynam-
ics produced by coupled, strongly nonlinear oscillators. For
integrable systems, for instance, it can extract the constant
frequencies of nonlinear oscillations. For nearly integrable
systems, these frequencies may no longer be constant, but
they change slowly and such variations can be captured by the
sliding windows. If there are fast chaotic dynamics, however,
then it has no theoretical guarantee to work. In addition to
providing diagnostic information on the frequency content
of a signal, our method produces (1) faithful reconstructions
of each constituent component with minimal cross-pollution
between them, (2) closed-form expressions for these recon-
structions which can be used for low-cost forecasting at
any timescale, and (3) statistics on the parameters of win-
dowed DMD models, whose distributions can be sampled for
stochastic ensemble forecasting.

A. Connection to Koopman theory

The underlying DMD algorithm exploited has a well-
documented relationship to Koopman theory, so we briefly
comment on how this applies to our technique. The Koopman
operator is a linear operator in some measure space which is
fully represents the nonlinear dynamics in the original state
space of some system. It is typically infinite-dimensional, but
can sometimes be well-approximated in finite dimensions.
DMD is one of a number of methods which accomplish this:
the matrix A which steps the data forward in time plays the
same role in r dimensions that the full Koopman operator
would in infinite dimensions.

The sliding-window approach presented in this paper gen-
erates a new approximator to the Koopman operator for each
DMD iteration. As such, the scale discovery protocol can
be viewed as an ensemble approach to building a statistical
distribution for the Koopman eigenvalue spectrum and iden-
tifying peaks that correspond to discrete timescales present
in the original data. While the eigenvectors of A vary from
one window to the next, and so cannot be interpreted as
global Koopman eigenfunctions, the spectral distribution of
eigenvalues could serve as a valuable starting point for an
algorithm seeking these functions.

B. Utility and applications

The recent ascendance of machine learning techniques for
analyzing complex systems, along with advances in hardware
to support these techniques, has dramatically overhauled en-
gineering approaches for diagnostics and control of such sys-
tems. These methods of course require high quality data sets,
but also often rely heavily on an interstitial preprocessing step.
For time series data with highly disparate timescale content,
scale separation is an integral preprocessing procedure for
many tasks. Modeling, forecasting, and control of discretely
multiscale systems are much more effective when the scale
components can be treated separately. This is particularly
true in the common case where the governing dynamics of
these components are only weakly coupled to one another:
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modeling them independently can produce excellent approxi-
mations to the true dynamics at a fraction of the computational
cost.

With this in mind, the method outlined in this paper is
presented as a possible precursor to any data-driven applica-
tion seeking to exploit a system’s multiscale properties. While
its output is not entirely dissimilar from well-established
multiresolution analysis methods, its differences from other
approaches render it particularly well-suited to this role. Its
synthesis of spatial and temporal coherencies in the data inte-
grate well into dynamics-focused applications; it can more ro-
bustly separate components even when one briefly encroaches
on the other’s characteristic timescale. Clean separation on
this basis is crucial for scale-separated model discovery. Fur-
thermore, it generates a closed-form parametric model for

time-local dynamics, which opens up possibilities for fore-
casting explored in Sec. VI. The example presented there
is fairly rudimentary, but a more nuanced approach might
prove a useful forecasting tool in and of itself. One possible
approach is a two-step algorithm which first predicts time
evolution of DMD eigenvectors and then builds a full data
prediction from those results.
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