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Space-time phononic crystals with anomalous topological edge states
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It is well known that an interface created by two topologically distinct structures could host nontrivial edge
states that are immune to defects. In this paper, we introduce a one-dimensional space-time phononic crystal
and study the associated anomalous topological edge states when the phononic crystal’s density is modulated
both in space and time. While preserving the key topological feature of the system, the time modulation also
duplicates the edge state mode across the spectrum, both inside and outside the band gap. It is shown that,
in contrast to conventional topological edge states which are excited by frequencies in the Bragg regime, the
time-modulation-induced frequency conversion can be leveraged to access topological edge states at a deep
subwavelength scale where the entire phononic crystal size can be as small as 1/5.1 of the wavelength. This
feature could open another route for designing miniature devices that are based on topological physics.
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I. INTRODUCTION

There has been a growing interest in topological phases
since the discovery of topological insulators in quantum
physics. One of the most intriguing phenomena associated
with topological phases is the topological edge state, which
is symmetry protected and is immune to local material imper-
fections. Topological phases have also recently been identified
in classical systems such as in photonics [1–11], acoustics
[12–28], and mechanics [29–33]. These topological phases
harbor nontrivial wave modes that are stable against local
perturbations, offering an intriguing solution for realizing
robust, backscattering-immune wave propagation [12–23], as
well as energy localization [24–28]. While most recent studies
pertaining to topological edge states have focused on two-
dimensional (2D) [12–20,27–33] or even three-dimensional
(3D) systems [21–23], one-dimensional (1D) systems [24–26]
could still serve as a simple yet versatile platform for ad-
vancing our fundamental knowledge on topological physics.
For the 1D case, the topological phase of the bulk band is
known as the Zak phase [34,35]. Considering a design of
a periodic structure with a band gap (BG), it is discovered
that the continuous deformation of the structure with constant
symmetry can produce closing and opening of the BG sup-
ported by a topological phase transition. This phase transition
can be leveraged to design topologically protected edge states
that reside between the initial structure and a deformed one.
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Xiao et al. [24] demonstrated this mechanism in a 1D acoustic
system where a topological edge state was created between
two phononic crystals (PCs). Meanwhile, topological edge
states are dictated by the geometrical symmetry of the system
and occur at the topological BG where the wavelength is com-
parable with the structure periodicity [17]. This limits their
functionalities to the Bragg scattering regime. Consequently,
the resulting structure can be very bulky at low frequencies.
This paper introduces another strategy to break down this
barrier by imposing both space and time modulation (STM) on
the medium properties. The STM could enable the engineer-
ing of topological phases in the time domain which provides
an extra degree of freedom and therefore richer physics. There
are two major findings in this study: (1) the emergence of
anomalous topological edge states in the bulk band; and (2)
the possibility to excite the edge state in the Bragg regime
using ultralow frequencies whose wavelengths could be orders
of magnitude greater than the periodicity of the PC. These
features could bring about different designs of miniature
devices based on topological phases for unconventional wave
manipulation, excitation, and detection. Although the current
study focuses on 1D acoustic systems, the theory developed
here can readily be extended to higher dimensions and other
wave-based systems.

STM of the medium properties has been proposed as a
robust way to break reciprocity which is intrinsic in conven-
tional dynamical systems. Consequently, nonidentical wave
transmission in opposite directions has been achieved. Space-
time (ST) photonic crystals were in fact introduced decades
ago [36–38] and the subject on nonreciprocity has recently
been reinvigorated in the field of photonics for the control
of electromagnetic waves using time variation of permittivity
and/or permeability [39–43]. There have also been numerous
works regarding STM in acoustics [44,46] and elastic waves
where the mechanical properties of the medium are ST mod-
ulated to achieve nonreciprocal wave propagation [47–50].

2643-1564/2019/1(3)/033069(9) 033069-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.1.033069&domain=pdf&date_stamp=2019-11-01
https://doi.org/10.1103/PhysRevResearch.1.033069
https://creativecommons.org/licenses/by/4.0/


OUDICH, DENG, TAO, AND JING PHYSICAL REVIEW RESEARCH 1, 033069 (2019)

FIG. 1. (a) A stationary PC with density modulation of ρ = ρ0[1 − α cos(kmx)] along the unit cell [0, λm] and its band structure (bottom
left panel). Pressure fields are also plotted for the eigenmodes indicated by 1, 2, and 2′ in the band structure (right panels). (b) Same as (a)
but for the second stationary PC with density modulation of ρ = ρ0[1 + α cos(kmx)]. (c) Band structure for the system constructed by the
two PCs where each PC consists of 7 unit cells: ρ = ρ0[1 − α cos(kmx)] for x < 0 and ρ = ρ0[1 + α cos(kmx)] for x > 0. The corresponding
transmission spectrum is shown on the right, where an edge state with a high transmission can be observed at � = 0.4981. (d) Transmission
configuration along the system (top panel) and the edge state pressure field for a single frequency excitation plotted against the time (bottom
panel). In both panels, the vertical axis is the time and the horizontal axis is the space.

Meanwhile, it has been shown that external time-dependent
perturbations can be used to achieve topological spectra
in initially trivial systems at the equilibrium [6,16,51,52].
This class of systems is known to be the basis of Floquet
topological insulators. A time-periodic potential can be also
introduced to a Hermitian system which leads to nontrivial
duplicated edge states in the band structure [53,54].

In this work, in contrast to the approach for building
Floquet topological insulators, we start from a stationary 1D
system possessing nontrivial topological phases as well as
topologically protected edge states inside a BG (Sec. II). This
initial system is constructed from two space-modulated PCs
exhibiting distinct Zak phases, i.e., 0 and π . We then introduce
the time modulation into both PCs in a way that the Zak
phase difference between the two PCs remains unchanged
throughout the entire duration of time modulation [53]. The
resulting PC is referred to as the space-time PC: a “living”
PC that evolves in time. We consider two kinds of time mod-
ulations: space decoupled and space coupled. While the latter
breaks reciprocity, the former conserves reciprocity (Secs. III
and IV, respectively). The fundamental differences between
the two modulations will be delineated. As will be shown
below, frequency conversion occurs in the space-time PC,
which gives rise to the duplication of edge states across the
entire temporal spectrum. This is the underlying mechanism
for the anomalous edge state discovered in this study.

II. TOPOLOGICAL ONE-DIMENSIONAL
PHONONIC CRYSTAL

We first consider two PCs having a sinusoidal space mod-
ulation of the medium density ρ(x). The governing equations

in acoustics in 1D read [55]

∂ p

∂x
= −ρ

∂v

∂t
,

∂v

∂x
= −Ke

∂ p

∂t
, (1)

where p, v, ρ, and Ke are the pressure, the particle velocity,
the density, and the compressibility of the medium. This study
assumes Ke to be a constant, i.e., space-and-time independent,
though we can conduct a similar study where the density is
constant and Ke is space-and-time dependent.

The top left panels of Figs. 1(a) and 1(b) illustrate the unit
cell for each PC: One has a modulation in the form of ρ =
ρ0[1 − α cos(kmx)] and the other is ρ = ρ0[1 + α cos(kmx)]
in the spatial domain [0, λm], where λm = 2π/km is the space
period, ρ0 is the air density (1.2 kg/m3), and α is the mod-
ulation amplitude (chosen as α = 0.5 throughout this study).
The two PCs are exactly 180° out of phase in space. Both PCs
have identical band structures (BSs) with a BG around the
normalized frequency � = 0.5 between the first and second
bands [bottom left panels of Figs. 1(a) and 1(b)]. For each PC,
we plot in the right panels of Figs. 1(a) and 1(b) the acoustic
pressure distributions along the unit cell at the edge of the
Brillouin zone (BZ) in the first band (point 1), and at both
the edge and center of the BZ in the second band (points 2
and 2′). The calculations are performed using the commercial
software COMSOL MULTIPHYSICS v5.3a. The symmetry of the
eigenmode dictates the Zak phase of each band. For instance,
for the first PC in Fig. 1(a), points 2 and 2′ in the second
band have the same symmetry, indicating a zero Zak phase;
for the second PC in Fig. 2(b), however, different symmetries
(antisymmetrical versus symmetrical) are present, implying
that the Zak phase is π . The Zak phase can be also confirmed
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FIG. 2. (a) Density modulation of ρ = ρ0{1 − [α + β sin(ωmt )] cos(kmx)} for x < 0 and ρ = ρ0{1 + [α + β sin(ωmt )] cos(kmx)} for x > 0
presented within one modulation period Tm. The wave fields of the edge state (c) inside the BG and duplicated edge states located at (b)
�0 + �m and (d) �0 − �m. (e) Frequency of the edge states as function of the modulation frequency �m. Lines are theoretical prediction and
circles are simulation results.

by using the following formula [24],

θZ =
∫ π/λm

−π/λm

〈uk|∂k|uk〉dk

= 1

2ρ0c2
0

∫ π/λm

−π/λm

(
i
∫ λm

0
u∗

k (x)∂kuk (x)dx

)
dk, (2)

where k is the wave number, uk = e−ikx p, and c0 is the speed
of sound in air (c0 = 343 m/s). The pressure eigenfunctions
uk are normalized so that ∫λm

0 (1/ρ0c2
0 )|uk|2dx = 1 is satisfied.

Taking advantage of the Zak phase change in the sec-
ond band, a topological edge state located at x = 0 using
both PCs is constructed. The resulting system has a space
modulation of ρ = ρ0[1 − α cos(kmx)] for x < 0 and ρ =
ρ0[1 + α cos(kmx)] for x > 0. The BS and the transmission
spectrum of this system are plotted in Fig. 1(c) which both
show the existence of an edge state. This edge state is located
at the middle of the Bragg BG, i.e., � = ω/kmc0 = 0.4981,
at which the structure periodicity corresponds to half of the
wavelength. We plot in the top panel of Fig. 1(d) the density
distribution of the system in a transmission configuration
where each PC consists of 7 unit cells (14 in total). For a
monochromatic wave excitation at the edge state frequency
� = 0.4981, the pressure field distribution (real part of the
complex pressure) is plotted in Fig. 1(d) during one time
period T = 2π/ω. The acoustic energy is clearly confined in
the vicinity of the interface between the two PCs (x = 0). It
is noted that although sinusoidal space modulation is chosen
in this study, the theory developed here can be generalized to
other types of modulation (e.g., square modulation) and the
main physics is expected to be the same.

III. SPACE-DECOUPLED TIME MODULATED
TOPOLOGICAL PC

The time modulation is subsequently introduced to both
PCs in the following manner:

ρ = ρ0{1 − [α + β sin (ωmt )] cos (kmx)} for x < 0, (3)

and

ρ = ρ0{1 + [α + β sin (ωmt )] cos (kmx)} for x > 0,

where α = 0.5 and β = 0.2 are assumed. A modulation fre-
quency of �m = ωm/kmc0 = 0.484 is chosen which is close
to the edge state’s frequency of the stationary system (cor-
responding to β = 0). This enables us to excite an ultralow
frequency edge state mode as will be shown later. Please note
that the density here is not assumed to be weakly modulated
as was done in Ref. [45]. This time modulation is space
decoupled in the sense that the functions (sine and cosine)
governing the space and time modulations are independent
from each other, which is less explored in the past [56].
One can visualize this as the density of the system only
having its amplitude varying with time. Figure 2(a) shows
the time variation of the reduced density (ρ − ρ0)/ρ0 of the
supercell having 14 unit cells. This constitutes the domain
in which Eq. (1) is to be solved. With the space-decoupled
time modulation of the supercell described by Eq. (3), each
PC has its Zak phase fixed with time. This is because only
the amplitude of the density is changing with time, so that
the symmetry of the second band is conserved at each instant.
Consequently, the Zak phase difference between the two PCs
remains independent of time.
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FIG. 3. (a) Transmission spectrum through the space-decoupled time modulated system composed of two PCs with a constant Zak phase
shift, and a closeup view near �0 ± �m (inset figures). (b) Top panel: Transmission configuration of the structure with density modulation
of ρ = ρ0{1 − [α + β sin(ωmt )] cos(kmx)} for x < 0 and ρ = ρ0{1 + [α + β sin(ωmt )] cos(kmx)} for x > 0 presented within one modulation
period Tm. Bottom panel: Pressure field for incident wave at �0 = 0.4981. (c) Spatial-frequency spectra of the wave field for incident wave
excitations at �0 = 0.4981 (left panel) and �0 − �m = 0.014 (right panel).

Knowing that the density ρ is periodic in both space and
time, one can apply the Floquet theorem,

p(x, t ) = p̃(x, t )ei(ωt−kx), v(x, t ) = ṽ(x, t )ei(ωt−kx), (4)

where p̃ and ṽ are periodic both in time and space. Inserting
these expressions into Eq. (1), the following eigenvalue prob-
lem can be constructed where ω is the eigenvalue to be solved
for each wavenumber k:(

∂
∂x ρ(x, t ) ∂

∂t

Ke
∂
∂t

∂
∂x

)(
p̃
ṽ

)
+

(−ik 0
0 −ik

)(
p̃
ṽ

)

= ω

(
0 −iρ(x, t )

−iKe 0

)(
p̃
ṽ

)
. (5)

The time variable t can be considered as a synthetic di-
mension in addition to the real physical dimension x. Sub-
sequently, Eq. (5) can be solved in the space-time domain
displayed in Fig. 2(a) along with the Floquet boundary con-
ditions. Such a method can be generalized to solving wave
equation problems involving media with arbitrary space-time
periodic properties.

In this study, Eq. (5) is solved again by COMSOL MUL-
TIPHYSICS. Among all possible solutions, we have identified
three eigenmodes displayed in Figs. 2(b)–2(d) where the
acoustic energy is confined within the vicinity of x = 0: The
first one is located at frequency �0 = 0.4981 [Fig. 2(c)] and
it corresponds to the edge state inside the BG in the stationary
case; the second and third modes are located exactly at �0 +
�m = 0.9821 [Fig. 2(b)] and �0 − �m = 0.014 [Fig. 2(d)].
These modes are anomalous edge states, and their emergence

in the bulk band can be attributed to the time-modulation-
induced frequency conversion, which changes the topological
feature of the structure leading to duplicated edge states at
frequencies �0 ± n�m where n is an integer [52–54]. The
positions of these modes in the band can be tuned by changing
the modulation frequency �m as shown in Fig. 2(e), where the
theory (lines) agrees very well with the simulation (circles).

To gain a better insight on these modes, Fig. 3(a) illus-
trates the calculated transmission spectrum through the STM
system. The calculation is performed in the time domain
where we analyze the Fourier spectrum of the transmitted
wave through the structure using a wideband incident pulse
(a Gaussian-modulated cosine function). A transmission peak
corresponding to the edge state is observed inside this BG
at the normalized frequency �0 = 0.4981 which corresponds
exactly to the stationary case. Note that the system remains
reciprocal and the BG does not experience a frequency shift
from the stationary case, which is a major departure from
the commonly studied space-coupled time modulation where
reciprocity is broken [45–47]. In these systems, the space-time
perturbation or modulation of the intrinsic property of the
medium (density, compressibility, or stiffness) has a driven
or wavelike directional motion which breaks the reciprocity.
This is not the case for our space-decoupled time modulation
which preserves reciprocity.

We also observe two less visible transmission peaks at
0.014 and 0.9821 [insets of Fig. 3(a)] corresponding to the
excitation of the first-order edge states outside the BG at
�0 ± �m, which confirms the prediction of the earlier eigen-
value analysis. These peaks appear less pronounced in the
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FIG. 4. (a) Transmission spectrum through the space-decoupled time modulated system composed of two PCs and a static density defect in
between, and a closeup view near �0 ± �m (inset figures). (b) Top panel: Transmission configuration of the structure with density modulation
of ρ = ρ0{1 − [α + β sin(ωmt )] cos(kmx)} for x < −λm/10, ρ = ρ0 for −λm/10 < x < λm/10, and ρ = ρ0{1 + [α + β sin(ωmt )] cos(kmx)}
for x > λm/10, presented within one modulation period Tm. Bottom panel: Pressure field for incident wave at �0 = 0.5. (c) Spatial-frequency
spectra of the wave field for incident wave excitations at �0 = 0.5 (left panel) and �0 − �m = 0.016 (right panel).

spectrum compared to the one at �0 because they are located
outside the BG. The bottom panel of Fig. 3(b) shows the
wave pressure field for a monochromatic excitation at the
frequency �0 = 0.4981 where one can observe the localized
edge state mode at the interface x = 0. This mode, however,
is not pure in its Fourier components, although the excitation
is strictly monochromatic. To this end, we apply the temporal
Fourier transform to the wave field shown in Fig. 3(b) and
the results (referred to as the spatial-frequency spectrum of
the wave field) are presented in Fig. 3(c) for the case of
monochromatic excitations at �0 = 0.4981 and �0 − �m =
0.014, respectively plotted in the left and right panels. In other
words, these are the pressure fields along the PC across the
frequency spectrum. The spatial domain has a range of −20 <

x/λm < 20. In the case of an incident wave at �0 = 0.4981
[left panel of Fig. 3(c)], edge state modes confined at the
center of the system (in the vicinity of x = 0) are excited both
at this same frequency and at �0 − �m = 0.014, albeit with
the latter having a much smaller amplitude. Meanwhile, if
we choose a monochromatic excitation exactly at �0 − �m =
0.014, the wave field plotted in the right panel of Fig. 3(c)
suggests that it is possible to excite the edge state at �0 =
0.4981 inside the BG. We also would like to point out that
it is likely that the edge state at �0 − �m is also excited
but its characteristics (e.g., energy confinement) is not clearly
visible as it is “drowned” by the wave field excitation at this
frequency. This has happened partially due to the fact that this
frequency, again, is located outside the BG.

For the case of monochromatic excitation at �0 − �m =
0.014, the incident wavelength is at λ ≈ 71.4λm and the

frequency conversion allows the excitation of the edge state
inside the BG at �0 = 0.4981 in the Bragg regime. Giving
that the entire phononic crystal has a length of Ls = 14λm,
the functionality of the structure is effective though its size
is only 1/5.1 of the incident wave wavelength (versus 7×
wavelength in the stationary case). Though the peak pressure
of the first-order edge state is about 20 dB lower than that of
the zeroth-order edge state, it is still well within the detectable
range under a reasonable signal-to-noise ratio.

Furthermore, an intriguing feature of these edge states is
that they are robust against defects both in time and space.
In fact, we examine the robustness of the edge states in the
space-decoupled time modulated system by considering a
defect of size λm/5 in the vicinity of the interface located at
x = 0 between the two PCs, where the density is static. Thus,
the whole system has its density following the form

ρ = ρ0{1 − [α + β sin(ωmt )] cos(kmx)} for x < −λm/10,

ρ = ρ0 for − λm/10 < x < λm/10, (6)

and

ρ = ρ0{1 + [α + β sin(ωmt )] cos(kmx)} for x > λm/10,

where α = 0.5 and β = 0.2.
We conduct a similar study to show that this defect does

not affect the characteristic of the PC. Figure 4(b) shows
the density variation during one modulation period Tm =
2π/ωm where the defect can be observed as the constant
density near x = 0. Figure 4(a) presents the transmission
spectrum for wave propagation through the structure where
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we can clearly see that the curve is very similar to the one
of the system without the defect in Fig. 3(a). In fact, the
two curves would virtually overlap if we were to plot them
together. We can also observe the edge state inside this BG
(the peak) at the normalized frequency �0 = 0.5 along with
two transmission peaks located at 0.016 and 0.9841 which
correspond to the excitation of the first-order edge states
outside the BG at �0 ± �m. Because of the defect, these
frequencies are slightly offset from the original ones (0.014,
0.4981, and 0.9821) by a small amount that is roughly 0.002.
We plot in Fig. 4(c) the spatial-frequency spectrum of the
wave field for monochromatic excitations at �0 = 0.5 and
�0 − �m = 0.016, respectively, in the left and right panels.
We can observe the same results as in Fig. 3(c) for the system
without the defect. The edge states, including the anomalous
ones, are therefore topologically protected against the defect
and can be excited at a deep subwavelength scale where the
incident wavelength is λ ≈ 62.5λm in this case.

IV. SPACE-COUPLED TIME MODULATED
TOPOLOGICAL PC

We investigate here the wave propagation for the
space-coupled time modulated system. In this case, the
time modulation is introduced to both PCs follow-
ing ρ = ρ0[1 − α cos(ωmt − kmx)] for x < 0 and ρ =
ρ0[1 + α cos(ωmt − kmx)] for x > 0. A modulation frequency
of �m = ωm/kmc0 = 0.2 is chosen. We choose this number
so that we can also demonstrate high-order edge state modes
(high order in terms of the frequency). In the previous case, we
have only demonstrated the zeroth- and first-order edge state
modes. This time modulation is space coupled in the sense that
both ST modulations appear in the cosine function. Contrary
to the space-decoupled time system, one major difference is
that the space-coupled modulation breaks the reciprocity. This
is because under such a modulation, the density variation
can be manifested as a wave propagating in either positive
or negative x direction [see Fig. 6(b), top panel], and this
synthetic external field is the foundation of the mechanism
that breaks the symmetry of the system.

With the space-coupled time modulation, each PC has its
Zak phase changing with time in a way that the Zak phase
difference remains constant between the two PCs. Figure 5
displays the Zak phase variation against time for each PC
during one modulation period Tm = 2π/ωm, where we can
clearly see that the Zak phase difference between the two PCs
remains constant at π , indicating the existence of edge states
at each time instant.

The top panel of Fig. 6(b) shows the density variation
during one modulation period Tm = 2π/ωm where the topo-
logical system is made of 14 unit cells, the same as in the
stationary case (Fig. 1). Indeed, the density variation can
be seen as a wave traveling in the +x direction as time
progresses. Figure 6(a) illustrates the calculated transmission
spectrum for forward wave propagation (from left to right).
Compared to the stationary case and the space-decoupled
time modulated system, the BG under the space-coupled time
modulation is shifted to higher frequencies by approximately
�m/2 = 0.1. It was previously shown that this type of time

FIG. 5. Zak phase θz as a function of time for both PCs dur-
ing one modulation period. The blue line is for the first PC with
the modulation of ρ = ρ0[1 + α cos(ωmt − kmx)] while the green
line is for the second PC with the modulation of ρ = ρ0[1 −
α cos(ωmt − kmx)]. The difference between the two Zak phases
remains unchanged and is equal to π .

modulation could introduce an asymmetrical BG shift for
opposite propagation directions which can be used to achieve
one-way propagation (nonreciprocity) [45–47]. Furthermore,
in Fig. 6(a), a transmission peak is observed inside this BG at
the normalized frequency � = 0.6013, corresponding to the
excitation of the edge state which is also shifted from its initial
frequency in the case of the stationary system (� = 0.4981).
We also note two transmission dips at � = 0.2013 and 0.4013
as well as a peak at 0.8013 and all of them are outside the
BG. which correspond to the excitation of high-order edge
states.

In the same way as in the space-decoupled time modulated
system, we perform transmission calculations in the time do-
main where we analyze the Fourier spectrum of the transmit-
ted wave through the structure. The bottom panels of Fig. 6(b)
show the wave pressure fields for monochromatic excitations
at frequencies �0 = 0.6013 and �0 − �m = 0.4013, where
one can observe localized modes at the interface. To these
wave fields, we apply the temporal Fourier transform and
the results are presented in Fig. 6(c) for the case of �0 =
0.6013, �0 − �m = 0.4013, and also �0 − 2�m = 0.2013,
respectively plotted in the top left, top right, and bottom
panels. In the case of an incident wave at �0 = 0.6013 [top
left panel of Fig. 6(c)], an edge state mode confined at the
center of the system (in the vicinity of x = 0) is excited at
�0 = 0.6013 but also at �0 − �m = 0.4013 which is outside
the BG. A second-order edge state is also excited at �0 −
2�m = 0.2013 but is far less visible since the energy allocated
at higher-order edge states is weaker. Meanwhile, if we choose
a monochromatic excitation exactly at �0 − �m = 0.4013,
the wave fields plotted in the top right panel of Fig. 6(c)
suggest that, not only the excitation of an edge state at this
frequency (� = 0.4013) is possible, but also an edge state
at �0 = 0.6013 inside the BG can be excited. This behavior
is similar to the one observed for the space-decoupled time
modulated system. In the same way, if the excitation is at
�0 − 2�m = 0.2013 [bottom panel of Fig. 6(c)], it is possible
to excite the edge states at �0 − �m = 0.4013 and �0 =
0.6013 simultaneously. In this particular case, the edge state
inside the Bragg BG is excited using a monochromatic wave
at a wavelength λ ≈ 4.97λm.

033069-6



SPACE-TIME PHONONIC CRYSTALS WITH ANOMALOUS … PHYSICAL REVIEW RESEARCH 1, 033069 (2019)

FIG. 6. (a) Transmission spectrum through the space-coupled time modulated system composed of two PCs with a constant Zak phase
shift. (b) Top panel: Transmission configuration of the structure with density modulation of ρ = ρ0[1 − α cos(ωmt − kmx)] for x < 0 and
ρ = ρ0[1 + α cos(ωmt − kmx)] for x > 0 presented within one modulation period Tm. Bottom panels: Pressure fields for incident wave at
�0 = 0.6013 and �0 − �m = 0.4013, respectively. (c) Spatial-frequency spectra of the wave field for incident wave excitations at �0 = 0.6013
(top left panel), �0 − �m = 0.4013 (top right panel), and �0 − 2�m = 0.2013 (bottom panel).

Meanwhile, the transmission characteristic of the system
for backward wave propagation is dramatically different due
to the nonreciprocity of the system. Figures 7(a) and 7(b)
illustrate the calculated transmission spectra for forward (from
left to right) and backward (from right to left) wave propaga-
tion, respectively. Compared to the stationary case presented
in Fig. 1, the BG under the space-coupled time modulation
is shifted to higher frequencies by �m/2 = 0.1 in the case of
forward propagation [Fig. 7(a)], while it is shifted to lower
frequencies by −�m/2 = −0.1 for backward propagation
[Fig. 7(b)].

The system’s nonreciprocity for wave propagation can lead
to multiple functionalities. For instance, the structure can be
utilized for or unidirectional sensing using either the peak
at �0 = 0.6 inside the BG which extends from � = 0.52 to
0.69 for forward propagation [Fig. 7(a)] or in the backward
propagation using the peak at � = 0.4 [Fig. 7(b)] inside
the BG which ranges from 0.32 to 0.49. Additionally, the

backward propagation can be used for unidirectional filtering
using the second BG which ranges from � = 0.77 to 0.85
[Fig. 7(b)] while in this same frequency range the structure
behaves as a single frequency selective filter for forward
propagation at �0 + �m = 0.8 [Fig. 7(a)]. It is noted that all
these functionalities can be tuned by changing the modulation
frequency.

V. CONCLUSION

In conclusion, we propose to enrich the functionalities of
topological devices via time modulation, which gives rise to
the duplication of topological edge states across the entire
spectrum. This feature can be used to achieve deep subwave-
length manipulation of the edge state in the Bragg regime,
which could be proven useful for designing miniature topolog-
ical devices for waveguiding, sensing, and excitation, among
other intriguing functionalities. Furthermore, we show that the
time modulation can be introduced to break reciprocity that, in
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FIG. 7. (a) Transmission spectrum through the space-coupled
time modulated system composed of two PCs with a constant Zak
phase shift for (a) forward and (b) backward propagation.

conjunction with the anomalous edge states, could engender
exotic unidirectional wave behaviors. Future work will expand
the model to higher dimensions where even richer physics
can be foreseen. It would be also interesting to construct
a real physical model to experimentally validate the theory.
Active acoustic metamaterials [45] and piezoelectric materials
[49,50] could be viable options in this regard. For instance,
one can imagine a one-dimensional acoustic metamaterial
similar to the one introduced by Chen et al. [57]. Using the
periodic distribution of membranes connected to electromag-
nets that change the membrane tension, it is possible to tune
the effective acoustic density by almost 100% upon changing
the applied voltage.
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